Polytechnique - ENS

Exercice 1 (Polytechnique - 2024 (Loubière et Hansen))

• Exercice 1: Soit f une fonction continue sur \mathbb{R}^+ , a et b deux réels strictement positifs, calculez:

$$\int_0^\infty \frac{f(bt) - f(at)}{t} dt$$

En déduire $\int_0^1 \frac{t-1}{\ln t} dt$ • Exercice 2: montrer l'existence et calculez

$$\sum_{n=0}^{\infty} \frac{2^n x^{2^n - 1}}{1 + x^{2^n}}$$

Exercice 2 (Polytechnique - 2024 (Aubisse))

• Exercice 1: on munit l'espace $E = \mathbb{R}^n$ de sa structure euclidienne canonique. Soit u un endomorphisme autoadjoint de E. On note $\lambda_1 \leq \cdots \leq \lambda_n$ les valeurs propres de u. Soit (e_1, \ldots, e_n) une base orthonormée de E telle que $\forall i \in [1, n], \langle u(e_i), e_i \rangle = \lambda_i$. Montrer que $(e_1, ..., e_n)$ est une base de vecteurs propres de u.

• Exercice 2: Montrer que $\sum_{n=0}^{+\infty} (1 - (1 - e^{-n})^x) \sim \ln(x)$ quand $x \to +\infty$.

Exercice 3 (Polytechnique - 2024 (Sanchez-Nissim))

• Exercice 1 : Soit $f:[0,1] \to \mathbb{R}$.

1) Montrer que si f est continue alors le graphe de f noté Γ_f est fermé dans \mathbb{R}^2 . La réciproque est-elle vraie?

2) Montrer que si Γ_f est compact alors f est continue.

• Exercice 2 : Soit $(X_n)_{n \ge 1}$ une suite de variables aléatoires i.i.d. de loi uniforme sur $\{-1,1\}$. On pose $S_n = \sum_{k=1}^n X_k$, et on note

 $N: \omega \mapsto \operatorname{card} \{n \in \mathbb{N}^*, S_n(\omega) = 0\} \in \mathbb{N} \cup \{+\infty\}.$

1) Montrer que $\mathbf{E}(N) = +\infty$.

2) Exprimer $P(N \ge 2)$ en fonction de $P(N \ge 1)$.

3) Montrer que $P(N = +\infty) = 1$.

Exercice 4 (Polytechnique - 2024 (Xillo))

• Exercice 1: Combien y a-t-il de matrices orthogonales de taille $n \in \mathbb{N}^*$ à coefficients dans \mathbb{Z} ?

Exercice 2: Soient V un \mathbb{C} -espace vectoriel de dimension finie non nulle et φ un morphisme de groupes de \mathbb{U} dans $\mathrm{GL}(V)$ tel que $\{0\}$ et V soient les seuls sous-espaces vectoriels de V stables par tous les $\varphi(g)$ pour $g \in \mathbb{U}$.

1) Montrer que dim V = 1.

2) On suppose $f: \theta \in \mathbb{R} \mapsto \varphi(e^{i\theta})$ dérivable en 0. Déterminer φ .

• Exercice 3 : Déterminer les variables aléatoires indépendantes de toutes les variables aléatoires.

Exercice 5 (Polytechnique - 2024 (Loussier))

• Exercice 1: soit M une matrice symétrique réelle. On considère une base de vecteurs propres e_1, \ldots, e_n associés aux valeurs propres $\lambda_1, ..., \lambda_n$. On note alors |M| l'unique matrice telle que $\forall i \in [1; n], |M|e_i = |\lambda_i|e_i$.

On note p^- le projecteur orthogonal sur $\bigoplus_{\lambda_i < 0} E_{\lambda_i}$. On introduit p un projecteur orthogonal quelconque et on note $q = p - p^-$.

Montrer que $\operatorname{tr}(q^2|M|) = \operatorname{tr}(qM)$

Exercice 2 : Soit (E, N) un espace vectoriel normé et $S \subset E$. Soit $x \in E$.

On dit que x est isolé dans S lorsqu'il existe r > 0 tel que $S \cap B(x, r) = \{x\}$. On dit que x est un point d'accumulation de S lorsque $x \in \overline{S \setminus \{x\}}$.

1) Montrer que $x \in \overline{S} \Leftrightarrow x$ est isolé dans S ou x est un point d'accumulation de S.

2) Montrer que \overline{S} est l'union de S et de ses points d'accumulation.

Exercice 6 (ENS - 2024 (Loubière))

1) Soit f une fonction continue et dérivable sur un intervalle I contenant 0 telle que :

$$\forall x \in I, |f'(x)| \le C|f(x)| + A$$

Montrer que

$$|f(x)| \le |f(0)|e^{C|x|} + \frac{A}{C} (e^{C|x|} - 1)$$

On admet que le résultat se généralise à plusieurs variables et avec une norme.

2) Soit h une fonction continue de \mathbb{R} dans $M_{n,1}$, soit $X_0 \in M_{n,1}$. On définit par récurrence la suite f_i de fonctions de \mathbb{R} dans $M_{n,1}$ par :

$$f_0 = X_0$$

 $f_{i+1} = X_0 \text{ et } f'_{i+1} = f_{i+1} + \langle f_i | f_{i+1} \rangle h$

Montrer que sur un intervalle contenant 0, f_i converge uniformément vers s l'unique fonction solution du problème de Cauchy

$$s(0) = X_0$$
 et $s' = s + \langle s|s\rangle h$

Exercice 7 (ENS - 2024 (Sanchez-Nissim))

Soit $n \in \mathbb{N}$. Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on note $||A|| = \sqrt{\sum_{1 \le i,j \le n} |a|^2}$ et $\sigma(A) = \operatorname{Sp} A$.

1) Pour A, B dans $S_n(\mathbb{R})$, montrer que

$$\inf_{\substack{G \in \mathcal{M}_n(\mathbb{R}) \\ \|G\| = 1}} \|AG - GB\| = \min_{\substack{\lambda \in \sigma(A) \\ \mu \in \sigma(B)}} |\lambda - \mu|$$

2) Si $A, B \in \mathcal{M}_n(\mathbb{C})$, montrer que

$$\inf_{\begin{subarray}{c} G \in \mathcal{M}_n(\mathbb{C}) \\ \|G\| = 1 \end{subarray}} \|AG - GB\| \leq \min_{\begin{subarray}{c} \lambda \in \sigma(A) \\ \mu \in \sigma(B) \end{subarray}} |\lambda - \mu|$$

Montrer que le minimum est atteint.

Exercice 8 (ENS - 2024 (Aubisse, Xillo))

On pourra admettre dans cet exercice que π est irrationel.

1) Soit $\alpha > \frac{1}{2}$. Montrer que la série suivante est convergente :

$$\sum_{n>1} \frac{(-1)^n}{n^\alpha + \cos n}$$

2) Étudier la convergence de la série précédente pour $\alpha \in \mathbb{R}^+$.

Exercice 9 (ENS - 2024 (Jazeron))

On note $\mathbb{A} = \mathcal{F}(\mathbb{N}^*, \mathbb{C})$. On définit + et * par, $\forall n \in \mathbb{N}^*$:

$$(f+g)(n) = f(n) + g(n)$$

$$(f * g)(n) = \sum_{d|n} f(d) \times g\left(\frac{n}{d}\right)$$

- 1) Montrer que $(\mathbb{A}, +, *)$ est un anneau commutatif intègre.
- 2) Trouver les inversibles de \mathbb{A} .
- 3) Soit $(a, b, c) \in \mathbb{A}^3$. On suppose que a et $b^2 4ac$ sont inversibles. Résoudre l'équation $ax^2 + bx + c = 0$ dans \mathbb{A} , dont x est l'inconnue.