I Une norme utile sur $M_d(\mathbb{R})$

- I.A) L'application $(A,B)\mapsto AB$ est bilénaire sur $M_d(\mathbb{R})$ en dimension finie donc continue. L'application $A\mapsto (A,A)$ de $M_d(\mathbb{R})$ dans $M_d(\mathbb{R})^2$ est continue (chaque composante l'est). Ainsi $A\mapsto A^2$ est continue sur $M_d(\mathbb{R})$. Par récurrence, on montre que $A\mapsto A^k$ est continue sur $M_d(\mathbb{R})$ pour tout $k\in\mathbb{N}$ (on peut aussi dire que chaque coefficient de A^k est un polynôme en tous les coefficients de A). De même l'application $(A,A)\mapsto \lambda A$ est continue sur $\mathbb{R}\times M_d(\mathbb{R})$. Par somme d'applications continues f_P est continue (on peut aussi dire que chaque coefficient de $f_P(A)$ est un polynôme en tous les coefficients de A).
- I.B) voir cours
- **I.C.**) On a directement $A_{i,j}^2 \le \sum_{1 \le k, l \le n} A_{k,l}^2 = ||A||^2 \operatorname{donc} |A_{i,j}| \le ||A||$.
- I.D) Rien de mieux qu'un bon calcul on a d'une part

$$||AB||^2 = \sum_{i=1}^n \sum_{j=1}^n (AB)_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^n \left(\sum_{k=1}^n A_{ik} B_{kj}\right)^2,$$

et l'inégalité de Cauchy-Schwarz donne

$$\left(\sum_{k=1}^{n} A_{ik} B_{kj}\right)^2 \leq \left(\sum_{k=1}^{n} A_{ik}^2\right) \left(\sum_{l=1}^{n} B_{kl}^2\right).$$

On obtient alors

$$\|AB\|^2 \leq \sum_{i=1}^n \sum_{j=1}^n \left(\sum_{k=1}^n A_{ik}^2\right) \left(\sum_{l=1}^n B_{kl}^2\right) = \left(\sum_{i=1}^n \sum_{k=1}^n A_{ik}^2\right) \left(\sum_{j=1}^n \sum_{l=1}^n B_{kl}^2\right) = \|A\|^2 \|B\|^2.$$

I.E) Par récurrence à partir de la relation précédénte.

II Séries entières sur les matrices

- II.A) On note $u_n: A \mapsto a_n A^n$. Pour tout $n \in \mathbb{N}$, u_n est définie et continue sur $M_d(\mathbb{R})$. Soit s $r \in [0, R]$ et $K = \overline{B}(O, r)$. Pour tout $M \in K$, on a $\|u_n(M)\| \le |a_n| \|M\|^n \le |a_n| r^n$. La série de fonctions $\sum u_n$ converge normalement sur K. Ainsi φ est définie et continue sur tout $\overline{B}(O, r)$ pour r < R, donc sur B(0, R).
- **II.B.B.1)** On considère $\{k \in \mathbb{N}, (I_n, A, ..., A^{k-1}) \text{ libre}\}$. Cet ensemble contient k = 1, est majoré (par le degré du polynôme caractéristique donc admet un plus grand élément $r \le n$. La famille $(I_n, A, ..., A^{r-1})$ est libre et la famille $(I_n, A, ..., A^r)$ est liée.
- **II.B.2)** Pour l'unicité : si $A^n = \sum_{k=0}^{r-1} \lambda_{k,n} A^k = \sum_{k=0}^{r-1} \mu_{k,n} A^k$ alors, $\sum_{k=0}^{r-1} (\lambda_{k,n} \mu_{k,n}) A^k = 0$ et par indépendance, $\lambda_{k,n} = \mu_{k,n}$ pour tout $k \in [0; r-1]$.

L'existence : on la prouve par récurrence sur n. La proposition est vraie jusqu'au rang r-1 (on a $A^j=A^j$). Si la proposition est vraie pour un certain rang n, alors

$$A^{n+1} = \lambda_{r-1,n} A^r + \sum_{k=0}^{r-2} \lambda_{k,n} A^{k+1}.$$

La définition de r, donne une relation $\sum_{p=0}^{r} \alpha_p A^p = 0$ avec des coefficients non tous nuls. Le co-

efficient α_r est non nul sinon on aurait une relation non trivial entre $I_n, A, ..., A^{r-1}$ ce qui est exclu. On obtient A^r comme combinaison linéaire de $I_n, A, ..., A^{r-1}$. Finalement A^{n+1} est encore dans $\text{Vect}(I_n, A, ..., A^{r-1})$.

Autre méthode : on note Q le polynôme minimal de A. Il est unitaire de degré r. On effectue la division euclidienne de X^n par $Q: X^n = Q.B+R$ avec $\deg R \le r-1$. Alors $A^n = Q(A)B(A)+R(A) = R(A)$ avec R de degré au plus r-1.

- II.B.3) On note $F = \mathbb{C}[A] = \mathbb{C}_{r-1}[A]$. La famille (I,A,\ldots,A^{r-1}) est une base de F. On peut alors définir une norme sur F: si $M = \sum_{k=0}^{r-1} \alpha_k A^k$, on pose $N(M) = \sum_{k=0}^{r-1} |\alpha_k|$ (norme 1 dans la base choisie). Cette norme est équivalente à la norme induite par $\|.\|$ sur F.Il existe donc une constante C telle que $N \leqslant C$. $\|.\|$ sur F. En appliquant à A^n , on a $N(A) \leqslant C \|A^n\|$ et $N(A^n) = \sum_{k=0}^{r-1} |\lambda_{k,n}|$.
- **II.B.4)** On fixe $k \in [0; r-1]$. On a alors $|a_n \lambda_{k,n}| \le C|a_n| \|A^n\| \le C|a_n| \|A\|^n$. Puisque $\|A\| < r$, la série $\sum a_n \lambda_{k,n}$ est absolument convergente.
- **II.B.5**) Soit $N \in \mathbb{N}$, on a

1

$$\sum_{n=0}^{N} a_n A^n = \sum_{n=0}^{N} a_n \left(\sum_{k=0}^{r-1} \lambda_{k,n} A^k \right) = \sum_{k=0}^{r-1} \left(\sum_{n=0}^{N} a_n \lambda_{k,n} \right) A^k.$$

Puisque chaque série $\sum a_n \lambda_{k,n}$ converge, par linéarité, on obtient

$$\sum_{n=0}^{+\infty} a_n A^n = \sum_{k=0}^{r-1} \left(\sum_{n=0}^{+\infty} a_n \lambda_{k,n} \right) A^k.$$

Cela donne l'existence d'une polynôme P tel que $\varphi(A) = P(A)$. L'unicité se fait comme précédemment.

II.B.6) On calcule A^2 et on obtient A... par récurrence $A^n = A$ pour tout $n \in \mathbb{N}^*$. Ainsi,

$$\varphi(A) = \exp(A) = I_n + A \sum_{k=1}^{+\infty} \frac{1}{k!} = I_n + (e-1)A.$$

II.C) Si la relation est vraie pour toute matrice A, elle est notamment vraie pour $A=zI_n$ pour tout $z\in\mathbb{C}$. Cela donne, pour tout $z\in\mathbb{C}$, $\varphi(A)=\left(\sum_{n=0}^{+\infty}a_nz^n\right)I_d=P(z)I_d$. Ainsi, $\varphi(z)=P(z)$ pour tout $z\in\mathbb{C}$. Par unicité d'un dse en 0, on en déduit que $\varphi=P$. Réciproquement si $\varphi=P$ est polynomiale alors on a l'égalité pour toute matrice A.

année 2015/2016

III Deux applications

III.A) Première application : une formule de trigonométrie matricielle

III.A.1) Si $\sum a_n$ et $\sum b_n$ sont deux séries absolument convergentes, alors $\sum c_n$ où $c_n = \sum_{k=0}^n a_k b_{n-k}$ est absolument convergente et

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

III.A.2) les séries $\sum \frac{(iA)^n}{n!}$ et $\sum \frac{(iB)^n}{n!}$ sont absolument convergentes. On a

$$c_n = \sum_{k=0}^{n} \frac{(iA)^k}{k!} \frac{(iB)^{n-k}}{(n-k)!} = \frac{i^n}{n!} \sum_{k=0}^{n} \binom{n}{k} A^n B^{n-k} = \frac{(i(A+B))^n}{n!}$$

puisque A et B commutent. On obtient la relation demandée.

III.A.3) On utilise la question précédente. On remarque que $\exp(iA) = \cos A + i \sin A$. De plus $\sin A$ et $\cos A$ sont des séries entières de rayon infinies évaluées en A. D'après les questions précédentes, ce sont des polynômes en A donc $\cos A$ et $\sin A$ commutent. On peut alors écrire

$$(\cos A + i \sin A)(\cos A - i \sin A) = \cos^2 A + \sin^2 A = \exp(iA)\exp(-iA) = I_d.$$

III.B) Seconde application : Cayley-Hamilton

III.B.1) La série entière $\sum z^n$ a un rayon de convergence 1 et, pour |z| < 1, $\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$, ou encore $(1-z)\sum_{n=0}^{+\infty} z^n = 1$. Si B est une matrice avec $\|B\| < 1$, on obtient

$$(I_d - B) \sum_{n=0}^{+\infty} B^n = I_n,$$

soit $I_d - B$ est inversible d'inverse $\sum_{n=0}^{+\infty} B^n$. On a alors $Re^{i\theta}I_d - A = Re^{i\theta}\left(I_d - \frac{A}{Re^{i\theta}}\right)$. Si $\|\frac{A}{Re^{i\theta}}\| < 1$, soit $R > \|A\|$, on a

$$\left(Re^{i\theta}I_d - A\right)^{-1} = (Re^{i\theta})^{-1} \left(I_d - \frac{A}{Re^{i\theta}}\right)^{-1} = (Re^{i\theta})^{-1} \sum_{n=0}^{+\infty} (Re^{i\theta})^{-n} A^n.$$

III.B.2) Pour R assez grand comme au dessus,

$$(Re^{i\theta})^n (Re^{i\theta}I_d - A)^{-1} = \sum_{k=0}^{+\infty} (Re^{i\theta})^{n-1-k} A^k.$$

On note $f_k(\theta) = (Re^{i\theta})^{n-1-k}A^k$. Pour tout $\theta \in [0,2\pi]$, on a $\|f_k(\theta)\| \le R^{n-1}\frac{\|A\|^k}{R^k}$. La série $\sum \left(\frac{\|A\|}{R}\right)^k$ converge si bien que $\sum f_k$ converge normalement sur $[0,2\pi]$. On peut donc permuter somme et intégrale, ce qui donne

$$\frac{1}{2\pi} \int_0^{2\pi} (Re^{i\theta})^n (Re^{i\theta}I_d - A)^{-1} d\theta = \frac{1}{2\pi} \sum_{k=0}^{+\infty} \int_0^{2\pi} (Re^{i\theta})^{n-1-k} A^k d\theta.$$

Le seul terme d'intégrale non nulle est celui pour k=n-1. Il reste alors $\frac{2\pi}{2\pi}A^{n-1}=A^{n-1}$. III.B.3) On a

$$\begin{split} \chi_A(A) &= \sum_{k=0}^d a_k A^k = \sum_{k=0}^d a_k \left(\frac{1}{2\pi} \int_0^{2\pi} (Re^{i\theta})^{k+1} (Re^{i\theta} I_d - A)^{-1} d\theta \right) \\ &= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (Re^{i\theta})^{k+1} (Re^{i\theta} I_d - A)^{-1} d\theta \right) \\ &= \frac{1}{2\pi} \int_0^{2\pi} \left((Re^{i\theta}) \chi_A (Re^{i\theta}) (Re^{i\theta} I_d - A)^{-1} d\theta \right). \end{split}$$

III.B.4) On a

$$(Re^{i\theta}I_d - A)^{-1} = \det(Re^{i\theta}I_d - A)^{-1}{}^t\operatorname{Com}(Re^{i\theta}I_d - A) = \frac{1}{\chi_A(Re^{i\theta})}{}^t\operatorname{Com}(Re^{i\theta}I_d - A),$$

ce qui donne

$$\chi_A(A) = \frac{1}{2\pi} \int_0^{2\pi} (Re^{i\theta})^t \text{Com}(Re^{i\theta} I_d - A) d\theta.$$

On note $B(\theta) = (Re^{i\theta})^t \text{Com}(Re^{i\theta}I_d - A)$. Chaque coefficient de $^t \text{Com}(Re^{i\theta}I_d - A)$ est un polynôme en les coefficients de $Re^{i\theta}I_d - A$ et devient un polynôme en $e^{i\theta}$ de degré au plus d-1. On a alors $B_{i,j}$ sous la forme $\sum_{k=1}^d \alpha_k e^{ik\theta}$ et $\int_0^{2\pi} B_{i,j}(\theta) \, d\theta = 0$. On en déduit que $\chi_A(A) = 0$.

IV Étude d'une équation fonctionnelle

IV.A) On fixe x. Pour tout $t < \frac{M}{2}$, on a 2f(x+t) = f(2x) + f(2t). Pour y et α inférieurs à $\frac{M}{2}$, on peut intégrer entre α et y:

$$2\int_{\alpha}^{y} f(x+t) dt = \int_{\alpha}^{y} f(2x) + f(2t) dt$$

ce qui donne

$$2(F(x+y) - F(x+\alpha)) = (y-\alpha)f(2x) + \left[\frac{F(2t)}{2}\right]_{\alpha}^{y} = (y-\alpha)f(2x) + \frac{1}{2}F(2y) - \frac{1}{2}F(2\alpha),$$

ce qui donne le résultat en réécrivant.

IV.B) On fixe $y \neq \alpha$ et on remplace x par x/2: pour tout x < M, on a

$$f(x) = 2\frac{F(x/2 + y) - F(x/2 + \alpha) - \frac{1}{4}F(2y) + \frac{1}{4}F(2\alpha)}{y - \alpha}.$$

Puisque F est de classe \mathscr{C}^1 sur $]-\infty, M[$, on en déduit que f est de classe \mathscr{C}^1 sur cet intervalle, puis que F est \mathscr{C}^2 ... par récurrence, on montrer que f est de classe \mathscr{C}^∞ sur $]-\infty, M[$.

IV.C) On fixe y < M/2. On dérive la relation dez départ par rapport à x. Cela donne, pour tout x, y < M/2, 2f'(x+y) = 2f'(2x). En dérivant par rapport à y, on obtient f''(x+y) = 0 pour tout x, y < M/2. Avec x = y, on a f''(2x) = 0 pour tout x < M/2 donc f''(x) = 0 pour tout x < M. La fonction f est donc affine. Soit $a, b \in \mathbb{R}$ tels que f(x) = ax + b. On a 2f(x+y) = 2a(x+y) + 2b = f(2x) + f(2y). Réciproquement, les fonctions affines conviennent. On en déduit que l'ensemble des solutions continues de l'équation est l'espace vectoriel des fonctions affines sur $]-\infty, M[$, de dimension 2, avec $x \mapsto 1$ et $x \mapsto x$ comme base.

V Étude d'une autre fonction matricielle

Pour ne pas mélanger, on notera q la dimension des matrices (au lieu de d qui est utilisé comme paramètre plus tard).

- **V.A.**) Avec q = 1. On a A = (x) et $f_{\xi}(A) = (\xi(x))$. La matrice est inversible si et seulement si son unique coefficient est non nul. La fonction ξ convient si et seulement si, pour tout $x \neq 0$, $\xi(x) \neq 0$.
- **V.B.**) La matrice A donnée est inversible si et seulement si $ad bc \neq 0$. Il faut alors que $f_{\xi}(A)$ soit inversible. Or

$$f_{\xi}(A) = \begin{pmatrix} \xi(a) & \xi(b) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & \xi(1) & \cdots & \xi(0) \\ \vdots & \vdots & & \ddots & \\ \xi(c) & \xi(d) & \xi(0) & \cdots & \xi(1) \end{pmatrix}$$

On calcule le déterminant de cette matrice. On effectue les opérations $L_i \leftarrow L_i - L_2$ pour i = 3, ..., q. On obtient le déterminant

$$\begin{vmatrix} \xi(a) & \xi(b) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & \xi(0) & \cdots & \xi(0) \\ 0 & 0 & \xi(1) - \xi(0) & \cdots & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \xi(1) - \xi(0) \end{vmatrix} = (\xi(1) - \xi(0))^{n-2} (\xi(a)\xi(d) - \xi(b)\xi(c))$$

On doit donc avoir $\xi(a)\xi(d) \neq \xi(b)\xi(c)$ lorsque $ad - bc \neq 0$.

V.C) Il existe $c \neq 0$ tel que $\xi(c) \neq 0$ sinon ξ serait nulle sur \mathbb{R}^* donc sur \mathbb{R} par continuité et $f_{\xi}(A)$ serait nulle donc non inversible. On fixe cette valeur de c et on prend d = c. On a alors $c(a - b) \neq 0$ soit $a \neq b$ qui entraîne $\xi(c)$ ($\xi(a) - \xi(b)$) $\neq 0$ soit $\xi(a) \neq \xi(b)$. La fonction ξ est injective. Puisqu'elle est continue sur \mathbb{R} elle est donc strictement monotone.

V.D. Supposons que $\xi(c) = 0$ pour un certain $c \neq 0$. On choisit d = c et $a \neq b$. On a bien $ad - bc = c(a - b) \neq 0$ et pourtant $\xi(a)\xi(d) = \xi(b)\xi(c) = 0$. Ainsi ξ ne s'annule pas sur \mathbb{R}^* .

V.E)

- V.E.1) On suppose que ξ est strictement croissante (raisonnement analogue sinon). On a $\xi(0 < \xi(1) < \xi(2)$. On utilise la relation précédente avec a = 0, b = 1, $c = \alpha$ et d = 2. On a $ad bc = -\alpha \neq 0$ si $\alpha > 0$. On note $h(\alpha) = \xi(0)\xi(2) \xi(1)\xi(\alpha)$. On a $h(0) = \xi(0)(\xi(2) \xi(1))$ et $h(2) = \xi(2)(\xi(0) \xi(1))$. Puisque $\xi(0) \neq 0$ et que ξ ne s'annule pas sur \mathbb{R}^* , $\xi(2)$ est du même signe que $\xi(0)$. Alors h(0) et h(2) sont de signe contraire et non nuls. Puisque $h(\alpha) = 0$
- **V.E.2)** On a trouvé a, b, c, d tels que $ad bc \neq 0$ et $\xi(a)\xi(d) \xi(b)\xi(c) = 0$ d'où une contradiction. Finalement $\xi(0) = 0$.
- **V.F.** La contraposée de *V.B* donne $\xi(a)\xi(d) = \xi(b)\xi(c) \Rightarrow ad = bc$. Avec $u = \xi(a), v = \xi(b), w = \xi(c)$ et $t = \xi(d)$, on obtient $ut = vw \Rightarrow \eta(u)\eta(t) = \eta(v)\eta(w)$. On choisit $u = t = xy, v = x^2$ et $w = y^2$. On a bien ut = vw ce qui entraine $\eta(xy)^2 = \eta(x^2)\eta(y^2)$ lorsque toutes les réels xy, x^2, y^2 sont dans *I* (on peut remarque que $\xi^{-1}(\mathbb{R})$ est un ouvert qui contient 0 donc au moins un intervalle [0, M[pour un M > 0).

V.G)

V.G.1) Notons α la borne supérieure de $I \cap \mathbb{R}_+^*$. L'intervalle I étant ouverrt, on a $I \cap \mathbb{R}_+^* =]0, \alpha[$. La fonction η est définie, continue sur $]0, \alpha[$. La fonction $\eta \circ \exp$ est continue sur $]-\infty, \ln \alpha[$ à valeurs strictement positives, et ainsi f est définie et continue sur $]-\infty, M[$ où $M = \ln \alpha$. On calcule alors

$$2f(x+y) = 2\ln(\eta(e^x e^y)) = \ln(\eta(e^x e^y))^2 = \ln(\eta(e^{2x})\eta(e^{2y})) = f(2x) + f(2y).$$

V.G.2) Puisque f est continue, on peut en déduire qu'il existe $a, b \in \mathbb{R}$ tels que f(x) = ax + b sur $]-\infty, M[$. On a alors, pour x < M,

$$\eta(\exp(x)) = \exp(ax + b) = e^b e^{ax},$$

et pour $x \in]0, \alpha[, \eta(x) = K_1 x^{\alpha_1}$ avec $K_1 = e^b > 0$ et $\alpha_1 = a$. Par continuité de η en 0 (avec $\eta(0) = 0$), on a $\alpha_1 > 0$.

- **V.G.3)** Même démarche... on prouve que $\eta(-xy)^2 = \eta(-x^2)\eta(-y^2)$ en prenant a = d = -xy et $b = -x^2$, $c = -y^2$. Puisque ξ est strictement monotone sur I, elle est cette fois strictement négative sur $I \cap \mathbb{R}_+^n$. On pose $f = \ln \circ \mu \circ \exp$ avec $\mu(x) = -\eta(-x)$ et on vérifie que f vérifie encore la relation fonctionnelle sur un intervalle $]-\infty$, $M[\circ u \ln(-\beta) \circ u] \circ u$ est la borne inférieure de $I \cap \mathbb{R}_+^n$.
- **V.G.4)** La fonction η est bijective de $I \cap \mathbb{R}_+^*$ dans \mathbb{R}_+^* et $\eta(x) = K_1 x^{\alpha_1}$. On a alors ξ bijective de \mathbb{R}_+^* sur $I \cap \mathbb{R}_+^*$ avec $\xi(x) = \left(\frac{x}{K_1}\right)^{1/\alpha_1}$. Cette fonction admettant pour limite $+\infty$ en $+\infty$, on en déduit que $I \cap \mathbb{R}_+^* = \mathbb{R}_+^*$. De même $I \cap \mathbb{R}_-^* = \mathbb{R}_-^*$ et I = R. Pour x > 0, on a

$$\eta(-1.x)^2 = \eta((-1)^2)\eta(x^2) = \eta(1^2)\eta(x^2) = \eta(x)^2.$$

On en déduit que $|\eta(-x)|=|\eta(x)|$. Puisque η est strictement monotone, les deux sont de signe contraire. Ainsi $\eta(-x)=\eta(x)$ pour tout x>0 donc pour tout $x\in\mathbb{R}$ (puisque $\eta(0)=0$). La fonction η est donc impaire et sa réciproque ξ également.

- V.H) On a étudié le cas où $\eta > 0$ sur \mathbb{R}_+^* . Par stricte monotonie, le seul autre cas est lorsque $\eta < 0$ sur \mathbb{R}_+^* . En appliquant le résultat à $-\xi$ ou de façon équivalente à $-\eta$ (les fonctions sont impaires), on vérifie que le problème est le même (la matrice $f_{\xi}(A)$ est changée en son opposée). Ainsi ξ est impaire et d'après les calculs précédents, elle est sous la forme $\xi(x) = Cx^{\beta}$ avec $\beta > 0$ et $C \neq 0$ (suivant le signe de η sur \mathbb{R}_+^*).
- V.I) En ajoutant les colonnes dans la première, on factorise par $(\lambda + q 1)$, puis en soustrayant la première colonne de 1, il reste des $\lambda 1$ sur la diagonale, des zéros ailleurs (sauf sur la première colonne). On obtient un déterminant $(\lambda 1)^{q-1}(\lambda + q 1)$.
- **V.J.** La fonction xi est solution si et seulement si, pour toute constante $K \neq 0$, $K\xi$ est solution (la matrice $f_{K\xi}(A)$ est $K.f_{\xi}(A)$). On peut suppose que C=1 dans la suite (et prendre ensuite toute constante $C\neq 0$).
 - On a $\xi(x) = x^{\beta}$ si x > 0 et $\xi(x) = -(-x)^{\beta}$ si x < 0. On applique à la matrice précédente qu'on note A_{λ} . On a (même genre de calcul, avec $\xi(1) = 1$):

$$\det f_{\xi}(A) = (\xi(\lambda) - 1)^{q-1} (\xi(\lambda) + (q-1)).$$

La matrice A_{λ} est inversible pour $\lambda \neq 1$ et $\lambda \neq 1-q$. Si det $f_{\xi}(A_{\lambda})=0$ alors $\lambda=1$ ou $\lambda=1-q$. Ce déterminant s'annule pour $\xi(\lambda)=1=\xi(1)$ donc pour $\lambda=1$ (bijectivité) et pour $\xi(\lambda)=1-q<0$. Cette dernière relation entraîne $\lambda=1-q<0$ (la seule valeur différente de 1 qui annule det A_{λ}). On a alors $\xi(\lambda)=-(-\lambda)^{\beta}=-(q-1)^{\beta}$ et la relation $-(q-1)^{\beta}=1-q$ d'où $(q-1)^{\beta-1}=1$. Lorsque $q-1\neq 1$, la seule solution est $\beta=1$.

- Si $q \ge 3$, alors les fonctions $\xi(x) = C.x$ (avec $C \ne 0$) sont les seules candidates et réciproquement elles vérifient la relation imposée.
- Il reste le cas q=2. On prend $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On suppose de nouveau C=1 et $\xi(x)=x^{\beta}$ si x>0. Par imparité, on a $\xi(x)=\mathrm{sgn}(x)|x|^{\beta}$. On doit montrer que $\xi(a)\xi(d)=\xi(b)\xi(c)$ entraine ad=bc. On récrit la relation :

$$\xi(a)\xi(d) = \operatorname{sgn}(a)\operatorname{sgn}(d)|ad|^{\beta} \operatorname{et} \xi(b)\xi(c) = \operatorname{sgn}(b)\operatorname{sgn}(c)|bc|^{\beta}.$$

L'égalité donne $\operatorname{sgn}(a)\operatorname{sgn}(d) = \operatorname{sgn}(b)\operatorname{sgn}(c)$ et $|ad|^{\beta} = |bc|^{\beta}$. La fonction $u \mapsto u^{\beta}$ est bijective de \mathbb{R}^+ dans \mathbb{R}^+ . On a donc |ad| = |bc| et finalement ad = bc puisque les signes sont identiques. On a bien la propriété (V.1). Dans le cas q = 2, toutes les fonctions impaires avec $\xi(x) = Cx^{\beta}$ si x > 0, où $C \neq 0$ et $\beta > 0$, conviennent.