Majoration du rayon spectral de la matrice de Hilbert

Une propriété de Perron-Frobenius

1. La matrice est directement symétrique. Pour $X \in M_{n,1}(\mathbb{R})$ décrit comme dans l'énoncé, on a

$${}^{t}XH_{n}X = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} h_{i,j}^{(n)} x_{i}x_{j} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \frac{1}{i+j+1} x_{i}x_{j}$$

D'un autre côté, on a avec $\tilde{X}(t)$,

$$\int_0^1 \tilde{X}(t)^2 dt = \int_0^1 \left(\sum_{i=0}^{n-1} x_i t^i \right) \left(\sum_{j=0}^{n-1} x_j t^j \right) dt = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \int_0^1 x_i x_j t^{i+j} dt = {}^t X H_n X$$

On a donc ${}^tXH_nX \ge 0$ et, puisque $t \mapsto \tilde{X}(t)^2$ est continue et positive sur [0,1], le terme est nul si et seulement si le polynôme \tilde{X} est nul. Cela équivaut à X=0. La matrice H_n est bien symétrique définie positive.

2. Si $X \in \mathcal{V}$ alors $H_nX = \rho_nX$ et ${}^tXH_nX = \rho_n{}^tXX = \rho_n\|X\|^2$. Réciproquement, si on note X_1, \ldots, X_n une base de vecteur propre associée aux valeurs propres $0 \le \lambda_1 \le \ldots \le \lambda_n = \rho_n$ de H_n , on a, si $X = \sum_{i=1}^n y_i X_i$,

$${}^{t}XH_{n}X = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}$$

On a alors ${}^tXH_nX - \rho_n \|X\|^2 = \sum_{i=1}^n (\lambda_i - \rho_n)y_i^2$. Chaque terme de la somme est négatif.

Si la somme est nulle alors chaque terme est nul, c'est-à-dire $(\lambda_i - \rho_n)y_i^2 = 0$ pour tout $i \in [1; n]$. Cela revient à dire que chaque $y_i = 0$ lorsque $\lambda_i < \rho_n$. Le vecteur X est donc dans \mathcal{V} .

3. On a

$${}^{t}X_{0}H_{n}X_{0} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} h_{i,j}^{(n)} x_{i}x_{j} \leq \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} h_{i,j}^{(n)} |x_{i}| |x_{j}| = {}^{t} \left| X_{0} \right| H_{n} \left| X_{0} \right|.$$

Si $X_0 \in \mathcal{V}$, alors ${}^tX_0H_nX_0 = \rho_n \|X_0\|^2 \le {}^t|X_0|H_n|X_0|$. Or, on a toujours ${}^t|X_0|H_n|X_0| \le \rho_n \|X_0\|^2 = \rho_n \|X_0\|^2$. Finalement on a

$$|X_0|H_n|X_0| = \rho_n ||X_0||^2 \text{ et } |X_0| \in \mathcal{V}.$$

4. On vient d'obtenir $H_n|X_0| = \rho_n|X_0|$. Si l'une des coordonnées de $H_n|X_0|$ est nulle - supposons la coordonnées i_0 - alors la ligne i_0 de cette relation donne

$$\sum_{i=1}^{n} h_{i_0,j}^{(n)} |x_j| = 0$$

Puisque tous les termes sont positifs, ils sont tous nuls. Ainsi $|X_0|$ serait nul et X_0 également ce qui est exclu. Si X_0 a une coordonnée nulle alors $|X_0|$ aussi et $H_n |X_0| = \rho_n |X_0|$ également donc X_0 est nul - toujours exclu.

5. Supposons que X_0 et Y_0 sont deux vecteurs propres linéairement indépendants de \mathcal{V} . Leurs coordonnées sont toutes non nulles, notamment la première de chacun (on les note x_0 et y_0). Le vecteur $y_0X_0-x_0Y_0$ est un vecteur propre de \mathcal{V} dont la première coordonnée est nulle. C'est donc le vecteur nul et X_0 et Y_0 ne sont pas linéairement indépendants. On en déduit que $\boxed{\dim\mathcal{V}=1}$.

Inégalité de Hilbert

6. Soit $P = \sum_{k=0}^{n} a_k X^k$. D'une part

$$\int_{-1}^{1} P(t) dt = \sum_{k=0}^{n} a_k \int_{-1}^{1} t^k dt = \sum_{k=0}^{n} a_k \frac{1 - (-1)^{k+1}}{k+1}$$

D'autre part

$$\int_0^{\pi} P(e^{i\theta}) e^{i\theta} d\theta = \sum_{k=0}^n a_k \int_0^{\pi} e^{i(k+1)\theta} d\theta = \sum_{k=0}^n a_k \left[\frac{e^{i(k+1)\theta}}{i(k+1)} \right]_0^{\pi} = \sum_{k=0}^n a_k \frac{e^{i(k+1)\pi} - 1}{i(k+1)}$$
$$= i \sum_{k=0}^n a_k \frac{1 - (-1)^{k+1}}{k+1}$$

Ainsi

$$\left| \int_{-1}^{1} P(t) dt \right| = \left| \int_{0}^{\pi} P(e^{i\theta}) e^{i\theta} d\theta \right| \le \int_{0}^{\pi} |P(e^{i\theta})| d\theta.$$

ce qui donne

$${}^{t}XH_{n}X = \int_{0}^{1} (\tilde{X}(t))^{2} \mathrm{d}t \leq \int_{0}^{\pi} |\tilde{X}(e^{i\theta})|^{2} \mathrm{d}\theta.$$

2

7. On essaie de calculer l'intégrale obtenue (les coefficients de \tilde{X} sont réels) :

$$\begin{split} \int_0^\pi |\tilde{X}(e^{i\theta})|^2 \mathrm{d}\theta &= \int_0^\pi \tilde{X}(e^{i\theta}) \overline{\tilde{X}(e^{i\theta})} \mathrm{d}\theta = \int_0^\pi \tilde{X}(e^{i\theta}) \tilde{X}(e^{-i\theta}) \mathrm{d}\theta \\ &= \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} x_j x_k \int_0^\pi e^{i(j-k)\theta} \mathrm{d}\theta \\ &= \sum_{j=0}^{n-1} x_j^2 \int_0^\pi \mathrm{d}\theta + \sum_{j\neq k} x_j x_k \int_0^\pi e^{i(j-k)\theta} \mathrm{d}\theta \\ &= \pi \|X\|^2 + \sum_{0 \leqslant j < k \leqslant n-1} \left(x_j x_k \int_0^\pi e^{i(j-k)\theta} \mathrm{d}\theta + x_k x_j \int_0^\pi e^{-i(j-k)\theta} \mathrm{d}\theta \right) \\ &= \pi \|X\|^2 + \sum_{0 \leqslant j < k \leqslant n-1} x_j x_k \int_0^\pi 2 \cos((j-k)\theta) \mathrm{d}\theta \\ &= \pi \|X\|^2 + \sum_{0 \leqslant j < k \leqslant n-1} x_j x_k \left[\frac{\sin((j-k)\theta)}{j-k} \right]_0^\pi \\ &= \pi \|X\|^2 \end{split}$$

On a donc effectivement ${}^tXH_nX \le \pi \|X\|^2$ pour tout $X \in M_{n,1}(\mathbb{R})$. remarque: ce n'est pas demandé mais puisque $\rho_n = \max_{\|X\|=1} {}^tXH_nX$, on obtient que $\rho_n \le \pi$.

8. On a

$$\rho_{n+1} = \max\{{}^{t}XH_{n+1}X, X \in M_{n+1,1}(\mathbb{R}), ||X|| = 1\}$$

et une propriété similaire pour ρ_n . Si X est une vecteur propre unitaire pour H_n pour la valeur propre ρ_n , on peut alors considérer le vecteur Y de taille n+1 donc les n premières coordonnées sont celles de X et la dernière vaut 0. On a alors $\|Y\|=1$ et ${}^tYH_{n+1}Y={}^tXH_nX=\rho_n$. On en déduit que ρ_{n+1} , en tant que maximum, est supérieur à cette valeur ρ_n . La suite $(\rho_n)_{n\in\mathbb{N}^*}$ est croissante (et majorée par π).

Un opérateur intégral

9. Soit $x \in [0,1[$. La fonction intégrée est continue sur [0,1[et, pour tout $t \in [0,1[$, $|K_n(xt)f(t)| \le n|f(t)|$ ce qui donne l'intégrabilité sur [0,1[. Pour $x \in [0,1[$, on a alors

$$T_n(f)(x) = \sum_{k=0}^{n-1} \left(\int_0^1 t^k f(t) \, dt \right) x^k$$

La fonction $T_n(f)$ est donc polynomiale sur [0,1[donc dans E. Si T_n était injectif, alors on aurait une application injective entre E de dimension infinie (E contient au moins toutes

les fonctions polynomiales) et l'espace des fonctions polynomiales de degré au plus n-1 de dimension finie.

On peut également constater que cela revient à trouver une fonction vérifiant $\int_0^1 t^k f(t) \, dt = 0$ pour tout $k \in [0; n-1]$. En considérant le produit scalaire $(P,Q) \mapsto \int_0^1 P(t)Q(t) \, dt$ sur $\mathbb{R}[X]$, on cherche un polynôme orthogonal aux polynômes de degré au plus n-1. Cela peut s'obtenir en orthonormalisant la famille $(1,X,\dots,X^n)$ pour ce produit scalaire - le dernier polynôme est alors orthogonal aux précédents.

10. Pour tout $x \in [0, 1[$,

$$T_n(\tilde{X})(x) = \sum_{k=0}^{n-1} \left(\int_0^1 t^k \tilde{X}(t) \, dt \right) x^k = \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \int_0^1 x_j t^{j+k} x^k \, dt = \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \frac{x^k x_j}{j+k+1}$$

ce qui donne
$$T_n(\tilde{X})(x) = {}^tZ(x)H_nX = {}^tXH_nZ(x)$$
 avec $Z(x) = \begin{pmatrix} 1 \\ x \\ \dots \\ x^{n-1} \end{pmatrix}$.

Si $T_n(f) = \lambda f$ et $\lambda \neq 0$ alors $f = \frac{1}{\lambda} T_n(f)$ est polynomiale de degré au plus n-1. On peut donc chercher f sous la forme \tilde{X} . On a alors

$$T_n(\tilde{X}) = \lambda \tilde{X} \Leftrightarrow \forall x \in [0, 1[, {}^tZ(x)H_nX = \lambda \tilde{X}(x)]$$

Or $\tilde{X}(x) = {}^{t}Z(x)X$, ce qui donne alors la relation

$$\forall x \in [0, 1[, {}^{t}Z(x) (H_n X - \lambda X)] = 0$$

et donc c'est équivalent à avoir un vecteur $H_nX - \lambda X = 0$. En effet, si on note A =

$$H_nX - \lambda X = \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_{n-1} \end{pmatrix}, \text{ alors } {}^tZ(x)A = \sum_{k=0}^{n-1} a_k x^k. \text{ La fonction polynomiale est nulle sur } [0,1[$$

si et seulement si ses coefficients sont nuls.

Finalement \tilde{X} est une fonction propre pour la valeur propre $\lambda \neq 0$ de T_n si et seulement si X est vecteur propre pour H_n pour la valeur propre λ .

11. On considère donc un vecteur propre X pour ρ_n . La fonction $\varphi = \tilde{X}$ est alors fonction propre pour T_n , c'est-à-dire, pour tout $x \in [0,1[,\int_0^1 K_n(tx)\varphi(t)\mathrm{d}t = \rho_n\varphi(x)$. D'après la première partie, on peut choisir X à coordonnées toutes strictement positives. Ainsi la fonction \tilde{X} associée est continue, strictement positive sur [0,1] et $\tilde{X} \in \mathscr{A}$. Pour cette fonction, on a bien

$$\rho_n = \sup_{x \in [0,1]} \frac{1}{\tilde{X}(x)} \int_0^1 K_n(tx) \tilde{X}(t) dt.$$

Soit $\varphi \in \mathscr{A}$ et X toujours comme au dessus, c'est-à-dire $T_n(\tilde{X}) = \rho_n \tilde{X}$. Pour tout $x \in]0,1[$, on a (tout ce qui apparaît est positif)

$$\begin{split} \int_0^1 K_n(tx) \tilde{X}(t) \mathrm{d}t &= \rho_n \tilde{X}(x) \\ \Leftrightarrow & \int_0^1 K_n(tx) \varphi(t) \frac{\tilde{X}(t)}{\varphi(t)} \mathrm{d}t &= \rho_n \tilde{X}(x) \\ \Leftrightarrow & \frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) \frac{\tilde{X}(t)}{\varphi(t)} \mathrm{d}t &= \rho_n \frac{\tilde{X}(x)}{\varphi(x)} \\ \Rightarrow & \rho_n \frac{\tilde{X}(x)}{\varphi(x)} & \leqslant & \frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) \mathrm{d}t \left\| \frac{\tilde{X}}{\varphi} \right\|_{\infty, [0,1[} \\ \Rightarrow & \rho_n \frac{\tilde{X}(x)}{\varphi(x)} & \leqslant & \sup_{x \in [0,1[} \left(\frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) \mathrm{d}t \right) \left\| \frac{\tilde{X}}{\varphi} \right\|_{\infty, [0,1[} \end{split}$$

ceci étant vrai pour tout $x \in]0,1[$, on obtient

$$\rho_n \left\| \frac{\tilde{X}}{\varphi} \right\|_{\infty,]0,1[} \leq \sup_{x \in]0,1[} \left(\frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) \mathrm{d}t \right) \left\| \frac{\tilde{X}}{\varphi} \right\|_{\infty,]0,1[}$$

et ainsi

$$\forall \varphi \in \mathcal{A}, \rho_n \leq \sup_{x \in [0,1[} \left(\frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) dt \right)$$

Enfin on a

$$\rho_n \leq \inf_{\varphi \in \mathscr{A}} \sup_{x \in [0,1[} \left(\frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) dt \right)$$

avec égalité pour la fonction \tilde{X} .

Une majoration explicite des rayons spectraux

- **12.** Soit $h(x, t) = \frac{t^n \varphi(t)}{1 xt}$.
 - pour $x \in]0,1[$, la fonction $t \mapsto h(x,t)$ est continue sur [0,1[et majorée par $\frac{\varphi(t)}{1-x}$ donc intégrable sur [0,1[.
 - pour $t \in [0, 1[, x \mapsto h(x, t) \text{ est de classe } \mathscr{C}^1 \text{ sur }]0, 1[\text{ avec } \frac{\partial h}{\partial x}(x, t) = \frac{t^{n+1}\varphi(t)}{(1-xt)^2}, \text{ continue par rapport à } t \text{ sur }]0, 1[\text{ (pour } x \in]0, 1[\text{ fixé)},$

• Soit $a \in]0,1[$. Pour $x \in]0,a]$ et $t \in]0,1[$, on a $\left| \frac{t^{n+1} \varphi(t)}{(1-xt)^2} \right| \le \frac{1}{(1-a)^2} \varphi(t)$ et $t \mapsto \frac{1}{(1-a)^2} \varphi(t)$ est intégrable sur]0,1[.

Correction

on en déduit que J_n est de classe \mathcal{C}^1 sur tout]0,a] avec $a \in]0,1[$ donc sur]0,1[et $J'_n(x)=\int_0^1 \frac{t^{n+1}\varphi(t)}{(1-xt)^2}\mathrm{d}t.$ De plus

$$xJ'_n(x) = \int_0^1 \frac{xt \cdot t^n \varphi(t)}{(1-xt)^2} dt = \int_0^1 \frac{(xt - 1 + 1)t^n \varphi(t)}{(1-xt)^2} dt$$
$$= -\int_0^1 \frac{t^n \varphi(t)}{1-xt} dt + \int_0^1 \frac{t^n \varphi(t)}{(1-xt)^2} dt = \int_0^1 \frac{t^n \varphi(t)}{(1-xt)^2} dt - J_n(x)$$

13. On commence par le cas n = 0:

$$\int_0^1 \frac{1-t}{1-xt} \varphi'(t) dt = \left[\frac{1-t}{1-xt} \varphi(t) \right]_0^1 - \int_0^1 \frac{xt-1+x(1-t)}{(1-xt)^2} \varphi(t) dt$$
$$= -\varphi(0) - (x-1) \int_0^1 \frac{\varphi(t)}{(1-xt)^2} dt$$

ce qui donne la relation au rang 0 avec $c = \varphi(0)$:

$$0 = \varphi(0) + (x - 1) \int_0^1 \frac{\varphi(t)}{(1 - xt)^2} dt + \int_0^1 \frac{1 - t}{1 - xt} \varphi'(t) dt$$

On refait pour $n \in \mathbb{N}^*$:

$$\int_{0}^{1} \frac{t^{n}(1-t)}{1-xt} \varphi'(t) dt = \left[\frac{t^{n}(1-t)}{1-xt} \varphi(t) \right]_{0}^{1}$$

$$-\int_{0}^{1} \frac{(nt^{n-1} - (n+1)t^{n})(1-xt) + x(t^{n} - t^{n+1})}{(1-xt)^{2}} \varphi(t) dt$$

$$= n \int_{0}^{1} \frac{(t^{n} - t^{n-1})}{1-xt} \varphi(t) dt + \int_{0}^{1} \frac{t^{n}(1-xt) - x(t^{n} - t^{n+1})}{(1-xt)^{2}} \varphi(t) dt$$

$$= n(J_{n}(x) - J_{n-1}(x)) + \int_{0}^{1} \frac{t^{n}(1-x)}{(1-xt)^{2}} \varphi(t) dt$$

$$= n(J_{n}(x) - J_{n-1}(x)) + (1-x) \int_{0}^{1} \frac{t^{n}}{(1-xt)^{2}} \varphi(t) dt$$

on obtient donc

3

$$nJ_n(x) = nJ_{n-1}(x) + (x-1)\int_0^1 \frac{t^n \varphi(t)}{(1-xt)^2} dt + \int_0^1 \frac{t^n (1-t)\varphi'(t)}{1-xt} dt$$

ce qui donne le résultat avec c = 0 si $n \in \mathbb{N}^*$.

14. On a donc

$$x(1-x)J'_n(x) = (1-x)\int_0^1 \frac{t^n \varphi(t)}{(1-xt)^2} dt + (x-1)J_n(x)$$
$$= -nJ_n(x) + c + nJ_{n-1}(x) + \int_0^1 \frac{t^n (1-t)\varphi'(t)}{1-xt} dt + (x-1)J_n(x)$$

Puisque

$$J_{n-1}(x) = \int_0^1 \frac{t^{n-1}(1 - xt + xt)\varphi(t)}{1 - xt} dt = \int_0^1 t^{n-1}\varphi(t)dt + xJ_n(x),$$

on obtient

$$x(1-x)J_n'(x) = (x-1-n+nx)J_n(x) + c + n\int_0^1 t^{n-1}\varphi(t)dt + \int_0^1 \frac{t^n(1-t)\varphi'(t)}{1-xt}dt$$

et ainsi

$$x(1-x)J_n'(x) = (n+1)(x-1)J_n(x) + c + n\int_0^1 t^{n-1}\varphi(t)dt + \int_0^1 \frac{t^n(1-t)\varphi'(t)}{1-xt}dt$$

- **15.** On résout cette équation sur [0,1[puisque 1-t ne s'y annule pas. On obtient $y(t)=C.\exp(\gamma\ln|1-t|)=C(1-t)^{\gamma}$. La fonction y est strictement positive sur]0,1[si et seulement si C>0. La fonction 1/y admet un prolongement continue sur [0,1] si et seulement si $-\gamma \ge 0$ soit $\gamma \le 0$. Enfin, on a $(1-t)\varphi(t)$ de limite nulle en 1 si et seulement si $1+\gamma>0$. Finalement les conditions sont C>0 et $-1<\gamma\le 0$ si $y(t)=C(1-t)^{\gamma}$.
- **16.** On prend donc $\varphi(t) = (1-t)^{\gamma}$ avec $\gamma \in]-1,0]$. Les fonctions qui apparaissent sont dérivables sur]0,1[donc

$$\begin{split} \Phi_n'(x) &= \left(nx^{n-1}J_n(x) + x^nJ_n'(x)\right)(1-x)^{-\gamma} + \gamma(1-x)^{-\gamma-1}x^nJ_n(x) \\ &= n\frac{\Phi_n(x)}{x} + x^{n-1}.x(1-x)J_n'(x)(1-x)^{-1-\gamma} + \gamma\frac{\Phi_n(x)}{1-x} \\ &= \left(\frac{n}{x} + \frac{\gamma}{1-x}\right)\Phi_n(x) \\ &+ \frac{x^{n-1}}{(1-x)^{\gamma+1}}\left(c + (n+1)(x-1)J_n(x) + n\int_0^1 t^{n-1}\varphi(t)\mathrm{d}t + \int_0^1 \frac{t^n(1-t)\varphi'(t)}{1-xt}\mathrm{d}t\right) \end{split}$$

on a
$$\int_0^1 \frac{t^n (1-t) \varphi'(t)}{1-xt} \mathrm{d}t = -\gamma \int_0^1 \frac{t^n \varphi(t)}{1-xt} \mathrm{d}t, \text{ si bien que}$$

$$\Phi'_{n}(x) = \left(\frac{n}{x} + \frac{\gamma}{1-x} - \frac{n+1}{x} - \gamma \frac{1}{x(1-x)}\right) \Phi_{n}(x) + \frac{x^{n-1}}{(1-x)^{\gamma+1}} \left(c + n \int_{0}^{1} t^{n-1} \varphi(t) dt\right) \\
= \left(-\frac{1}{x} + \gamma \frac{x-1}{x(1-x)}\right) \Phi_{n}(x) + \frac{x^{n-1}}{(1-x)^{\gamma+1}} \left(c + n \int_{0}^{1} t^{n-1} \varphi(t) dt\right)$$

Il reste alors

$$\int_0^1 t^{n-1} \varphi(t) \mathrm{d}t = \int_0^1 t^{n-1} (1-t)^\gamma \mathrm{d}t = \frac{\Gamma(n)\Gamma(\gamma+1)}{\Gamma(n+1+\gamma)}$$

Tout cela donne

$$\Phi'_n(x) = -(\gamma + 1) \frac{\Phi_n(x)}{x} + n \frac{x^{n-1}}{(1-x)^{\gamma+1}} c_n$$

où $c_n=c+n\frac{\Gamma(n)\Gamma(\gamma+1)}{\Gamma(n+1+\gamma)}$ (et $c=\varphi(0)$ si n=0 et c=0 sinon). On peut simplifier la constante :

$$\Gamma(n+1+\gamma) = (n+\gamma)(n-1+\gamma)\dots(1+\gamma)\Gamma(1+\gamma),$$

si bien que

$$c_n = c + \frac{n\Gamma(n)}{(n+\gamma)(n-1+\gamma)\dots(1+\gamma)} = c + \frac{n!}{(n+\gamma)(n-1+\gamma)\dots(1+\gamma)}.$$

On a notamment $c_0 = c = \varphi(0) = 1$ et, pour $n \ge 1$, $c_n = \frac{n!}{(n+\gamma)(n-1+\gamma)\dots(1+\gamma)}$.

- 17. On résout l'équation différentielle obtenue sur]0, 1[:
 - les solutions de l'équation homogène sont $x \mapsto \frac{A}{r^{\gamma+1}}$,
 - une solution particulière s'obtient par exemple par méthode de variation de la constante. On le cherche sous la forme $A(x)f_0(x)$ avec $f_0(x) = \frac{1}{r^{\gamma+1}}$ et on a l'équation

$$A'(x)f_0(x) = c_n \frac{x^{n-1}}{(1-x)^{\gamma+1}},$$

$$A'(x) = c_n \frac{x^{n+\gamma}}{(1-x)^{1+\gamma}}$$

puisque $n+\gamma>-1$, la fonction $t\mapsto \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}}$ est intégrable sur]0,1/2[et une primitive de cette fonction admet une limite finie en 0, ce qui permet de prendre la primitive qui s'annule en 0 pour avoir

$$A(x) = c_n \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} dt.$$

et finalement

4

$$\Phi_n(x) = \frac{A}{x^{\gamma+1}} + \frac{c_n}{x^{\gamma+1}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} dt.$$

Puisque Φ_n admet une imite finie en 0, on a A=0 et

$$\forall x \in]0,1[,\Phi_n(x) = \frac{c_n}{x^{\gamma+1}} \int_0^x \frac{t^{n+\gamma}}{(1-t)^{1+\gamma}} \mathrm{d}t$$

20.

18. On calcule $r_n(x)$ avec l'une des fonctions $\varphi: t \mapsto (1-t)^{\gamma}$ (et $\gamma \in]-1,0[$) et $K_n(tx) = \frac{1-(xt)^n}{1-xt}$,

$$r_n(x) = \frac{1}{\varphi(x)} \left(\int_0^1 \frac{1-x^n t^n}{1-xt} \varphi(t) dt \right) = \frac{1}{\varphi(x)} \left(J_0(x) - x^n J_n(x) \right) = \Phi_0(x) - \Phi_n(x).$$

On note alors $\alpha = -\gamma$ en prenant $\gamma \in]-1,0[$. Cela donne

$$\Phi_0(x) - \Phi_n(x) = \frac{c_0}{x^{1-\alpha}} \int_0^x \frac{t^{-\alpha}}{(1-t)^{1-\alpha}} dt - \frac{c_n}{x^{1-\alpha}} \int_0^x \frac{t^{n-\alpha}}{(1-t)^{1-\alpha}} dt$$
$$= \frac{1}{x^{1-\alpha}} \int_0^x \frac{1}{t^{\alpha} (1-t)^{1-\alpha}} (1 - c_n t^n) dt.$$

On écrit c_n avec α :

$$c_n = \frac{n!}{(1 - \alpha)(2 - \alpha)\dots(n - \alpha)} = \theta_n$$

Puisque les fonctions φ utilisées sont dans \mathscr{A} , on a

$$\inf_{\varphi \in \mathscr{A}} \sup_{x \in]0,1[} \left(\frac{1}{\varphi(x)} \int_0^1 K_n(tx) \varphi(t) \mathrm{d}t \right) \leq \inf_{\alpha \in]0,1[} \sup_{x \in]0,1[} \left(\frac{1}{x^{1-\alpha}} \int_0^x \frac{1-\theta_n t^n}{t^\alpha (1-t)^{1-\alpha}} \mathrm{d}t \right)$$

cela donne l'inégalité pour ρ_n .

19. On effectue les calculs avec $\alpha = \frac{1}{2}$:

$$\theta_n = \frac{n!}{\frac{1}{2} \frac{3}{2} \dots \frac{(2n-1)}{2}} = \frac{2^n n!}{1 \cdot 3 \cdot \dots \cdot (2n-1)} = \frac{(2^n n!)^2}{(2n)!} = \frac{2^{2n} (n!)^2}{(2n)!}.$$

on a alors

$$\rho_n \le \theta_n^{1/(2n)} \int_0^{\theta_n^{-1/n}} \frac{\mathrm{d}t}{\sqrt{t - t^2}}$$

avec $\theta_n^{1/(2n)} = \omega_n$, cela donne

$$\rho_n \leq \omega_n \int_0^{1/\omega_n^2} \frac{\mathrm{d}t}{\sqrt{\frac{1}{4} - (t - \frac{1}{2})^2}} = 2\omega_n \int_0^{1/\omega_n^2} \frac{\mathrm{d}t}{\sqrt{1 - (2t - 1)^2}} = \omega_n \left[\arcsin(2t - 1) \right]_0^{1/\omega_n^2}.$$

Plus qu'à simplifier $\arcsin(2t-1)$ en espérant faire apparaître $\arcsin\sqrt{t}$. Le plus simple est de dériver ces fonctions. Si $g(t) = \arcsin\sqrt{t}$ alors $g'(t) = \frac{1}{2\sqrt{t}}\frac{1}{\sqrt{1-t}} = \frac{1}{2\sqrt{t}(1-t)}$.

On se rend compte qu'il vaut mieux prendre cette primitive dans le calcul, ce qui donne

$$\int_0^{1/\omega_n^2} \frac{\mathrm{d}t}{\sqrt{t-t^2}} = \left[2\arcsin\sqrt{t} \right]_0^{1/\omega_n^2} = 2\arcsin\frac{1}{\omega_n}.$$

Finalement, on a $\rho_n \le 2\omega_n \arcsin \frac{1}{\omega_n}$

 $\omega_n = 2 \exp\left(\frac{1}{2n} \ln \frac{(n!)^2}{(2n)!}\right) = \exp\left(\ln 2 + \frac{1}{2n} \ln \frac{(n!)^2}{(2n)!}\right) = \exp\left(\frac{1}{2n} \left(\ln 4^n + \ln \frac{(n!)^2}{(2n)!}\right)\right)$

d'où $\omega_n = \exp\left(\frac{1}{2n}\ln\frac{4^n(n!)^2}{(2n)!}\right)$ avec

$$4^{n} \frac{(n!)^{2}}{(2n)!} \underset{n \to +\infty}{\sim} 4^{n} \frac{(2\pi n) n^{2n} e^{-2n}}{\sqrt{4\pi n} ((2n)^{2n} e^{-2n}} \underset{n \to +\infty}{\sim} \sqrt{n\pi}$$

Le terme dans l'exponentielle tend vers 0, d'où

$$\omega_n - 1 \underset{n \to +\infty}{\sim} \frac{1}{2n} \left(\ln \frac{4^n (n!)^2}{(2n)!} \right) \underset{n \to +\infty}{\sim} \frac{1}{2n} \ln(\sqrt{n\pi}) \underset{n \to +\infty}{\sim} \frac{\ln n}{4n}$$

On a donc $\omega_n = 1 + \frac{\ln n}{4n} + o\left(\frac{\ln n}{4n}\right)$ et $\frac{1}{\omega_n} = 1 - \frac{\ln n}{4n} + o\left(\frac{\ln n}{4n}\right)$. On a également arcsin $\frac{1}{\omega_n} = \frac{\pi}{2} - \arccos\frac{1}{\omega_n}$. En utilisant de plus arccos $1 - u \sim \sqrt{2u}$, on peut effectuer un développement limité et obtenir (calculs à revoir quand même)

$$2\omega_n \arcsin \frac{1}{\omega_n} = \pi - \sqrt{\frac{\ln n}{n}} + o\left(\sqrt{\frac{\ln n}{n}}\right)$$

ce qui donne un équivalent de $\pi - 2\omega_n \arcsin \frac{1}{\omega_n}$.