Critère de diagonalisation de Klarès

Soit n un entier naturel non nul et $\mathcal{M}_n(\mathbb{C})$ l'espace vectoriel des matrices d'ordre n à coefficients complexes. On note O_n la matrice nulle et I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$. La trace d'une matrice U de $\mathcal{M}_n(\mathbb{C})$ est notée $\mathrm{tr}(U)$. On dit que deux matrices U et V de $\mathcal{M}_n(\mathbb{C})$ commutent si UV = VU. Une matrice $N \in \mathcal{M}_n(\mathbb{C})$ est dite nilpotente s'il existe un entier k > 0 pour lequel $N^k = O_n$.

Dans tout le problème, on considère une matrice A de $\mathcal{M}_n(\mathbb{C})$ et on note f l'endomorphisme de \mathbb{C}^n canoniquement associé, c'est-à -dire l'endomorphisme dont la matrice dans la base canonique de \mathbb{C}^n est A. Le polynôme caractéristique de A est noté P et les valeurs propres complexes distinctes de A sont notées $\lambda_1, \lambda_2, \ldots, \lambda_r$. Pour tout $i \in [1; r]$, on note :

- α_i l'ordre de multiplicité de la valeur propre λ_i , c'est-à -dire l'ordre de multiplicité de la racine λ_i du polynôme P;
- P_i le polynôme défini par : $P_i(X) = (X \lambda_i)^{\alpha_i}$;
- F_i le sous-espace vectoriel de \mathbb{C}^n défini par $F_i = \text{Ker} \left((f \lambda_i \text{Id}_{\mathbb{C}^n})^{\alpha_i} \right)$;
- f_i l'endomorphisme de F_i obtenu par restriction de f à F_i .

Décomposition de Dunford

- 1/ Justifier que l'espace vectoriel \mathbb{C}^n est somme directe des espaces $F_i : \mathbb{C}^n = \bigoplus_{i=1}^r F_i$.
- 2/ En considérant une base de \mathbb{C}^n adaptée à la somme directe précédente, montrer que, pour tout $i \in [1; r]$, le polynôme caractéristique de f_i est P_i . (On pourra d'abord établir que P_i est un polynôme annulateur de f_i .)
- 3/ Montrer qu'il existe une matrice inversible P de $\mathcal{M}_n(\mathbb{C})$ telle que $A' = P^{-1}AP$ soit une matrice définie par blocs de la forme suivante :

$$A' = \left(\begin{array}{cccc} \lambda_1 I_{\alpha_1} + N_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_r I_{\alpha_r} + N_r \end{array}\right)$$

où $N_i \in \mathcal{M}_{\alpha_i}(\mathbb{C})$ est nilpotente pour tout $i \in [1; r]$.

4/ En déduire que la matrice A s'écrit sous la forme A=D+N, où D est une matrice diagonalisable et N une matrice nilpotente de $\mathscr{M}_n(\mathbb{C})$ qui commutent. Les matrices D et N vérifiant ces conditions constituent la *décomposition de Dunford* de la matrice A. Dans toute la suite du problème, on admettra *l'unicité* de cette décomposition, c'est-à-dire que D et N sont déterminées de façon unique par A. 5/ *Un exemple pour n* = 3 : calculer la décomposition de Dunford de

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Commutation et conjugaison

Pour toute matrice B et toute matrice inversible P de $\mathcal{M}_n(\mathbb{C})$, on note comm $_B$ et conj $_P$ les endomorphismes de $\mathcal{M}_n(\mathbb{C})$ définis par :

$$\forall X \in \mathcal{M}_n(\mathbb{C}), \begin{cases} \operatorname{comm}_B(X) = BX - XB \\ \operatorname{conj}_P(X) = PXP^{-1}. \end{cases}$$

Le but de cette partie est de démontrer que A est diagonalisable si et seulement si comm $_A$ est diagonalisable.

6/ Soit P une matrice inversible de $\mathcal{M}_n(\mathbb{C})$. Calculer $\text{conj}_{P^{-1}} \circ \text{comm}_A \circ \text{conj}_P$.

Pour tous $i, j \in [1; n]$, on note $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{C})$ dont tous les coefficients sont nuls, sauf celui situé à l'intersection de la i-ème ligne et de la j-ème colonne qui est égal à 1.

- 7/ Si A est une matrice diagonale, montrer que, pour tous $i, j \in [1; n]$, comm $_A$ admet $E_{i,j}$ comme vecteur propre. Déterminer l'ensemble des valeurs propres de comm $_A$.
- 8/ En déduire que si A est diagonalisable, comm $_A$ l'est aussi.
- 9/ Montrer que si A est nilpotente, comm $_A$ l'est également, c'est-à-dire qu'il existe un entier k > 0 pour lequel (comm $_A$) k est l'endomorphisme nul de $\mathcal{M}_n(\mathbb{C})$.
- 10/ Montrer que si A est nilpotente et si comm $_A$ est l'endomorphisme nul, alors A est la matrice nulle.

D'après la partie A, l'endomorphisme comm_A admet une décomposition de Dunford de la forme $\operatorname{comm}_A = d + n$, où les endomorphismes diagonalisable d et nilpotent n commutent : dn = nd.

11/ Déterminer la décomposition de Dunford de com m_A à l'aide de celle de A et conclure.

2

Formes bilinéaires sur un espace vectoriel complexe

Soit p un entier > 0 et E un espace vectoriel de dimension p sur \mathbb{C} . On note E^* le dual de E, c'est-à-dire l'espace vectoriel des formes linéaires sur E.

On considère une forme bilinéaire symétrique b sur \mathbb{C} , c'est-à-dire une application $b: E \times E \longrightarrow \mathbb{C}$ linéaire par rapport à chacune des composantes et telle que b(x,y) = b(y,x) pour tous $x,y \in E$. Si F est un sous-espace vectoriel de E, on appelle orthogonal de F relativement à b le sous-espace vectoriel de E défini par :

$$F^{\perp b} = \{ x \in E; \forall y \in F, b(x, y) = 0 \}.$$

On suppose que b est non dégénérée, c'est-à-dire que $E^{\perp b} = \{0\}$.

12/ Soit *u* un endomorphisme de *E*. Démontrer les implications suivantes :

(i)
$$u$$
 est diagonalisable \Rightarrow (ii) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2) \Rightarrow$ (iii) $\operatorname{Ker}(u) \cap \operatorname{Im}(u) = \{0\}$.

Soit F un sous-espace vectoriel de E, de dimension q et soit $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_q)$ une base de F. Pour tout $i \in [1; q]$, on note φ_i la forme linéaire sur E définie par : $\varphi_i(x) = b(\varepsilon_i, x)$.

13/ Montrer que $(\varphi_1, \varphi_2, \dots, \varphi_q)$ est une famille libre de E^* .

On complète cette famille en une base $(\varphi_1, \varphi_2, \dots, \varphi_p)$ de E^* et on note (e_1, e_2, \dots, e_p) la base de E antéduale (dont $(\varphi_1, \varphi_2, \dots, \varphi_p)$) est la base duale - c'est-à-dire l'unique base de E telle que $\varphi_i(e_i) = \delta_{i,j}$ si $i, j \in [1, p]$).

14/ Montrer que $F^{\perp b}$ est engendré par $(e_{q+1}, e_{q+2}, \cdots, e_p)$ et en déduire la valeur de

$$\dim(F) + \dim(F^{\perp b}).$$

Critère de Klarès

Le but de cette partie est de démontrer que

A est diagonalisable si et seulement si $Ker(comm_A) = Ker((comm_A)^2)$.

- 15/ Montrer que l'application φ de $\mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$ dans \mathbb{C} , définie par $\varphi(X,Y) = \operatorname{tr}(XY)$ pour tous $X,Y \in \mathcal{M}_n(\mathbb{C})$, est une forme bilinéaire symétrique non dégénérée.
- 16/ Établir l'égalité : $(\text{Ker}(\text{comm}_A))^{\perp \varphi} = \text{Im}(\text{comm}_A)$.
- 17/ En déduire que, si A est nilpotente, il existe une matrice X de $\mathcal{M}_n(\mathbb{C})$ telle que

$$A = \operatorname{comm}_{A}(X)$$
.

Calculer alors comm_{$A+\lambda I_n$}(X) pour tout λ dans \mathbb{C} .

Soit *D* et *N* les matrices de la décomposition de Dunford de *A* définies à la question 4).

- 18/ Démontrer qu'il existe une matrice X de $\mathcal{M}_n(\mathbb{C})$ telle que $N = \text{comm}_A(X)$.
- 19/ Conclure.

année 2022/2023