Mathématiques MPI* DL12 - Mines MPI 2023 Correction

1 Calculdeo(1)

ok
1> Si|x|<1alors|% 2 de Z 2 converge. Si | x| > 1, 1a série diverge grossierement. La fonction o est définie sur [—-1, 1]. Pour

«k

i
tout ke N*, up: x— fc—lzc est continue sur [—1,1] et |ug(x)| < ﬁ donc Z uy converge normalement sur [-1, 1] et o est continue
sur [—-1,1].

2> Avec une double intégration par parties, on obtient

fon (at®+ Bt)cos(nt)dt = (—1)”(2n(z th-p

n

En choisissant f=-1leta = %, on obtient,
L (71, 1
VneN~", — 1t -t cos(nt)dtz—2
0 \27 n

On calcule, pour ¢ €]0, 7],

2s1n( ) Z cos(kt) = Z 2sin(£)cos(kt) =) (sin(k+
2 -1 2 k=1

(2
t—sin| -t
2

+1)
n —_—
2

) i-sinfi=3) ) =9
—|t—sin|k—=|¢t]| =sin
2 2

. (2n+1

" sin t 1

ce qui donne, pour tout n € N* et ¢ €]0, 7], Z cos(kt) = — . 3
k=1 ZSin(E)

3> le premier résultat a déja été vu plusieurs fois... on écrit alors

n 1 n 1 1 2 . 1 5 n
k;?_ Zf (Et —t)cos(kt)dt—fo (Et —t)(z cos(kt))dt

k=170 k=1
On note g(1) = 5~ t2 —t.On a alors (I'intégrale est faussement impropre en 0) :
o1 T g t 17
— —————sin|2n+1) - |dt— = ndt.
§ 2 fo 2sin(/2) sm(( " )2) 2[0 &
_ g0 1 P-2mr _ 2271
On note ¢(1) = 2sin(7/2) ~ 27 2sin(¢/2) ~ dmsin(t/2) PO t€]0, 7). Ona

21 t3 l’2 T ”2 ”2 7'[2
f g(t)dtz _—— = — — — = ——
0 6r 2]g 6 2 3

Si on montre que ¢ se prolonge en une fonction de classe %" sur [0, 7], on obtiendra

. no1 172 7
S
La fonction ¢ est de classe &' sur 0,7

=271t _ ~1.

¢ @ se prolonge par continuité en 0 : ¢(?) Rathy Tale

o ¢' admet une limite finie en 0 :

(2r—2m)sin(¢/2) - (1/2) (1* - 2nt) cos(t/2) _ 4(t—m)sin(¢/2) - (1> - 2mt) cos(t/2)
4msin®(¢/2) - 8msin?(t/2)

Vtelo,ml, ¢ () =

On effectue un développement limité au voisinage de 0 du numérateur :

4(t-m)sin(¢/2) - (% —2mt) cos(t/2) =4t (t/12+ o(£%)) —4m (t/2+ 0 (£?)) = 2 (L + 0(1) + 2wt (1 + 0(1) = t* + 0 (£?) s £

1

cela donne ¢ (t) = 5 Ainsi ¢’ admet une limite finie en 0

2
-0 87I(I/2)2

Tout ces résultats permettent de dire que la fonction ¢, prolongée en 0 par la valeur —1 est de classe %! sur [0, 7].
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2 Equivalents

. . . NP . . . sint . (sinp)*
41> Soit h(t) = (sin#)*. Lafonction h est bien définie et continue sur ]0, 7/2]. Puisque ltlr% — = 1,ona, pour x € R, ltm(l) e 1
et (sinf)* o t*. La fonction h est donc intégrable sur ]0,7] si et seulement si x > —1 donc x € I. Soit € > 0 et x > —1 (ainsi
—

x+1>0)
/2 1 - /2 ) 1 wl2 )

f (sin )™ sintdr = [—cost(sin ¥, +(x+1)f (sin )" cos” tdt = cose(sine) ™™ + (x + l)f (sin)*(1 —sin” H)dt.
€ € £

Puisque x + 1 > 0, lorsque ¢ tend vers 0, on obtient f(x+2) = (x+1)(f(x) — f(x+2)), ce qui donne (x+2) f(x+2) = (x+1) f(x).

5> On applique le théoréme de dérivation pour les intégrales a parametre - en se placant sur un intervalle [a, +oo[ avec a > —1
(le probleme d’intégralité arrive pour x = —1). On note h(x, t) = (sin £)* = exp(xInsin t).

e pour tout x = a, x — h(x, t) est de classe €? sur [a, +oco] avec % (x,8) = (Insin ) (sin 1)* et ‘327}2’ (x, 1) = (Insin )% (sin £)*,

¢ les fonctions ¢ — h(x, t), t — %(x, nHett— 227’2’@, t) sont continues sur ]0, %]. De plus, pour tout x = a, t — h(x, t) est
intégrable sur 10, 71.

e puisque lg_l}(l) sint=0,onasint o t etIn(sin¢) t:oln t. Ainsi % (x,0) o t*Int. Puisque x = a > -1, il existe be] — 1, al.
Alors t*1n ttgo(tb) donc ¢t — %(x, t) est intégrable sur 0, %].

 Pour tout x = a et x €]0, %],

2
Z_}zl (x, t)' = (In?sin ) (sin H)* < (Insin ) (sin ) = (1)
X

La fonction ¢ est continue sur ]0, %], (1) t~0(ln2 sint)t? = too(tb) si on choisit b €] — 1, a[. Elle est donc intégrable sur
10, Z1.

On a toutes les hypotheéses pour appliquer le théoréme de dérivation. La fonction f est de classe ¢’ sur [a, +oo[ pour tout
a> —1donc sur [ et on obtient les deux premieéres dérivées en dérivant sous le signe somme. Notamment, puisque pour tout
t €]0, %], Insin ¢ <0, on obtient que f’ est négative et f” positive. La fonction f est décroissante et convexe sur I.

6 > On réutilise la relation (1). On a, par continuité de f en 1, liml(x +2)f(x+2)=f(1)=1cequidonne f(x) ~ . %

x—— X——

7> Pour tout n € N, la relation (1) donne (n+1) f(n) = (n+2) f(n+2). En multipliant par f(n+1), on a, pour tout n € N, (n +
D f(n) f(n+l) = (n+2) f(n+1) f(n+2). Lasuite ((n+1) f(n) f (n+1)) nen €st donc constante égalé a son premier terme f(0) f(1) =
%. Onadonc, pourtout neN, (n+1)f(n)f(n+1) = %

Par décroissance et positivité, pour tout n €N, ona f(n+1)? < f(n) f(n+1) < f(n)?. Cela donne, de nouveau par positivité,

VneN* T <<y Z
PENAN 2 SISV s

Pour x > 0 (par exemple), on a | x] < x < | x| + 1. Si on note temporairement n = |x],ona f(n+1) < f(x) < f(n) et ainsi

Ve < f < =
2(n+2) “Von
Vx>0 L<f()< T
O\ SISV g

chaque terme encadrant étant équivalent a / % lorsque x — +o0, on en déduit que f(x) = o / %
X—+00

ce qui donne

8> on fait un joli dessin avec tout ¢a...

3 Développement en série entiere

9>  Onnote g,(1) = (In(sin 1)) sin e Net ¢ > 0. Les fonctions g, sont continue sur]0, Z]. Comme précédemment g, () t~01n” t

p— ]. . 2 77"
et gn(t) = 9, (W) donc g, estintégrable sur ]0, 5].

/2
¢ En effectuant le changement de variable affine « £ = % — t» dans l'intégrale D;, on obtient bien D; = f In(cos r)dt.
0
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10 >

11>

/2
Onaf’(O):f In(sin )dt = D;. On a donc
0

/2 /2 /2 /2 1 /2 T
2D, :f ln(sint)dt+[ ln(cost)dt:f In(sin t cos t)dt:/ ln(ESiHZI)dt:f ln(Sin2t)dt—Eln2
0 0 0 o A
On effectue le changement de variable linéaire « r = 2u» dans cette derniere intégrale. Cela donne

11" . b4
2D; = —f In(sinu)du — —1n2
2Jo 2

T /2 b4
Or f In(sinw)du = f In(sinw)du + f In(sin #)du et un changement affine u = = — ¢ dans la seconde intégrale permet de
0 0 n/2

T
retrouver D;. Ainsi f Insin udu = 2D;. Finalement, on
0
1 b4 N T
2D, = E(ZDI) - Eln2 c’est-a-dire D; = -3 In2.

w2
Ona f'(1) = f In(sin #)(sin £)dz. On calcule cette intégrale par intégration par parties. Soit € €10, /2],
0

/2
COS t
dt

12 cos? t
dt =coseln(sing) +

/2
f In(sin £)(sin 1)d¢ = [(- cos t) In(sin t)]’”2 f -
£ £ € sint

sint

On calcule cette derniere intégrale en effectuant un changement de variable u = cos ¢ (I'application arccosinus est bijective et
%' de [0,1[ sur]0,7/2]) :
2

/2 2 /2 /2 2 0
cos” t cos® t cos” t u
/ - dt:f 5 (s1nt)dt—f —z(sint)dt:—f 2du
& ol & C

sint sin“ t 1-cos“t ose 1 —u

on continue :

cose 3% 1 41 1 [eose ] 1 1 1
—————du=-cose+— + du=—-cose+ —In(1 +cose) — —In(1 —cose)
0 1-u? 2 Jo 1+u 1-u 2 2

ce qui donne

/2 1 1 1
f In(sinf)(sinf)dt = coseln(sine)—cose+Eln(1+coss)—Eln(ésinzs/z)
ol
. € £ 1. 1+cose . €
= cossln(.’zsln—cos—)—cosg+—ln——ln(sm—)
2 2 2 2 2

£ €
(ln2cosz —1)cose+ (cose— l)lnsmé

2
puisque (cose —1)Insin § ~0 % In(%), sa limite est nulle. Finalement on obtient| f'(1) =In2-1 |
E—

Remarque : on peut aussi intégrer sin ¢ en 1 — cos ¢ afin d’avoir directement des limites en 0 et ainsi obtenir

w2 /2 t t—1
f In(sin ) (sin d ¢ = f cosreostm (C.OS ) dzr
o o sin t

et travailler sur cette intégrale (qui est bien convergente en 0) et qui donne des calculs un peu plus simples et rapides - siony
pense.

on ne voit pas trop quel changement de variable faire autre que u = In(sin #) sauf qu’il donne des valeurs dans | — oco,0]. On
prend plutét u = —In(sin £) donc « t = arcsine™* ». Lapplication u — arcsin(e”%) est de classe ¢! et réalise une bijection de
10, +oo] sur ]0, 72[ [ ce qui justifie le changement de variable. On obtient alors

()" —du=(-1)"

Dn=j:o \/T [~ \/_

On doit maintenant montrer que J, = ~ nl. On montre par récurrence (avec une intégration par parties)

/ n—>+oo

too 1 +00
u" e "*du = n!. On doit donc montrer que la différence est négligeable devant n!.

du =
0 \ e2u “

+o0o 1 +00 eu_ eZM_1 +00 1
]n—Kn:f W ———-e" du:f e | —— du:f u'e 4 du
0 e2u 1 0 e2u 1 0 (eu_,_,/eZu_l) e2u 1

que K, =
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En utilisant la minoration e* = 1+ x pour tout x =0, on a e** — 1 > 2u si u > 0. Cela permet de majorer :

+00 1 1 +o00o 1 1 +o0o
0<]n—Kn</ u"e‘”(z—)dus—f u”e‘”—duz—f ! _” du——(n 1!
0 et -1 2 Jo u 2 Jo

Ainsi0 < ]—”, -1< ZL et par encadrement, lim In_ 1. Celadonne| (-1)"D, ~ nl|
n. n n—+oo pn! n—+oo

+00 ﬂ
12> Site€]0,Z], (sinf)* = exp(xlnsint) = Z (Insin t)”— On note h;,(t) = (Insin t)” x
n=0

¢ la série de fonction Z hy converge simplement sur |0, ?1 et sa somme (la fonction ¢ — (sin 1)* est continue sur ]0, %)

¢ pour tout n €N, h;, est intégrable sur |0, %] et

/2 n |x| "
fo hp()dt=(-1D"Dp— ~ |x|

n! n—+oo

/2
On a donc convergence de Zf |h,()|desi|x] <1.
0

Tout cela permet d’utiliser le théoreme d’intégration terme a terme qui donne
+00

vxel-L1[ f(x)= ), Do

n=0 n!

4 Convergence de suite de fonctions

13> si on note m = min(a, b), on a a® cos?® x + b?sin? x = m?(cos® x + sin® x) = m? > 0. La fonction x — a? cos® x + b?sin® x est de

classe ¢! sur R a valeurs strictement positives. Par composition, ¥ est également de classe ¢! sur R. On a de plus

2(b? - a®)sinxcos x _ (V% - a®)sin2x

2 2.7 2 2

VxeR, P (x) =
a’cos® x+ b?sin®x  a®cos® x+ b?sin’ x

Pour la série, il est plus avantageux de commencer la somme a 0 puisque sin(0) = 0 : la série Z(p 2Nk converge absolument

a b a b
car|p| <1 (onaeneffet—aer <P < g avec et 7+D dans]0,1[)

4+Z°opksin(2kx) = Im (4+f(pezix)k) —alm (;) - i( U N

= =0 l_peZIx 2i l_peZLx l_pe—le
4 X g72ix B psin(2x) B psin(2x)
B Zpl—z,ocos(Zx)+p2 - 1—2pcos(2x)+p2 _41—2p(2c0s2x—1)+p2

psin(2x) psin(2x) b-a sin(2x)
= 4 2 7. =4 2 2. =4 2
1+2p+p°—4pcos”x  (1+p)°—4dpcosx b+a 4b b-a .,
m— mCOS X
(b—a)(b+ a)sin(2x) (b* - a*)sin(2x)

— = =¥'(x)
P> — (0% -a®)cos’x  a’cos®x+b%(1-cos® x)

X
14> PourtoutxeR, ¥ (x)—¥(0) = f ¥/(#)dt. Sion note vi(x) = pksin(zkx), ona|vg(x)| < Iplk donc Z vk converge normalement
0

sur R. Cela permet de permuter somme et intégrale :

+00 +oo 1 _ 2k
¥ -2na=43 Pkf sinkndr=4Yy p k1= cos(2kx)
k=1 0 =1 2k
j i - cos(2kx) k
Toujours puisque |p| < 1, les séries Z —k et Z p converge, ce qui permet de séparer la somme en deux :
+oo0 K
2k 2k
¥(x)=2Ina+2) — P Z cos( X) ¥ =2Ina—2In(l - p)— Z Cos( x) o
k=1

etln(1-p) = ln( ) donc2lna—1In(1-p) =2In =5+~ a+ b . Finalement

+00
VxeR,¥(x) = ZIn(M) -2 Z M k.
2 & k
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15> On pourrait étre tenté de faire apparaitre une somme double et intégrer... mais 1a on déborde sérieusement du programme.
On choisit de conserver 'un des ¥ (x) et d’utiliser la somme pour le second :

1 ¥ (x) cos(2kx) ok

VxeR, P2 (x) = Zln( b)\lf()—z
2 = k

k
» on s’intéresse au premier terme. Avec wy(x) = % cos(2kx), on a |wy| <| p|'C et Z wy converge normalement sur [0, 7].
Cela permet de permuter somme et intégrale (toutes les fonctions qui apparaissent sont continues)

+00 k
f‘I’(x)dx ann( ) Z cos(zkx)dx

T +b
et chacune des intégrales est nulle donc [ Y(x)dx=271n (QT)

¥ (x) cos(2kx) k

¢ On fait de méme avec z;(x) = :ona |zl < Mlplk ol M est un majorant de |¥| sur [0, 7] (la fonction est

continue). On peut donc écrire
f” X ¥ (x) cos(2kx) kq P
0

. pdx = Z ‘P(x) cos(2kx)dx

k=1 0

On s’intéresse aux intégrales :

n T 7T [ +oo
f ‘I’(x)cos(ka)dszln(a b)f cos(2kx)dx—2f (Z cos(2px) COS(ka)pIC dx.
0 0 0

p=1 k

On a de nouveau convergence normale de )k, (x) sur [0,7] avec hp(x) =
muter somme et intégrale. Il reste a calculer, pour p, k=1

cos(2p x)kcos(zkx) pk, ce qui permet de per-

f cos(2px) cos(2kx)dx = %f cos(2(k + p)x) + cos(2(k — p)x)dx
0 0

Lintégrale vaut 0 si k # p et % si k = p. Cela donne

b3 k k
j(; ¥ (x)coskx)dx = —2.%% = —7'[%

Toutes ces permutations permettent d’obtenir

+b +oo ok pw b +00 Ak
f Y2 (x)dx = 27 1n? (a ) ZZP— T(x)cos(ka)dsznlnz(a+ )—2 Ly
2 =1 k Jo 2 k

c’est-a-dire -
+00
f P2(x)dx = 47 In? ( Zb)+2 Z pk =4rl 2( ;b)+2na(p)

16 > On a directement nlil;l_l W¥,(#) = In(sin? ) = 2In(sin ¢). On rappelle que
—+00

/2
JHOE f In?(sin Hdt
0

/2 /2
On serait donc fortement dirigé vers la suite d'intégrales W, ()2dt qui devrait converger vers f 4In*(sinf)dt = 4f"(0).
0 0

/2
On cherche donc a étudier lim v n(t)zdt
n—+oo J

¢ la suite de fonctions continues sur ]0, /2], ‘I’fl, converge simplement sur ]0, /2] vers la fonction g: t — 41n?(sin )
« lafonction g est continue sur 10, 7/2]
« on doit dominer indépendamment de n > 1. On a a? cos® t + b%sin’ t < 1 et a% cos? t + b% sin? ¢ > b? sin® t > b?sin® ¢ =

Lll sin? . Cela donne

1.5
In L—lsm | <¥,(0)<0
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et0< W2 (1) < In? ( sin t) ¢(1). On prouve que ¢ est intégrable sur 10, 77/2]. Il y est continue et
1.5 .
In 1 sin“ | = —In4 + 2In(sin t) t~021n(t)

tp(n) ~ dlnt= i)
et (1) n® 00(\/;

/2 /2
Le théoreme de convergence dominée permet de conclure et ainsi nlirP f ‘Pfl(x) dx=4 f In?(sin )dt. De plus, puisque
—+ooJo 0

b4 /2
W, (@ —x)=¥,(x), ona, par changement de variable f ¥2 (x)dx =2 W2 (x)dx. LA question précédente donne
0 0

T a,+b
f ¥2 (x)dx = 47 In? (%) +270 ((by — an)®/(an + bp)?) = 4xn?2 + 2710 ((by, — an)?) car ay + by = 1.
0
Puisque b,, — a;, € [0,1[ et que o est continue en 1, lorsque n tend vers +oo, on obtient

/2
8[ In?(sin )d¢ = 4n1n?2 + 2707 (1)
0

Cela donne

mi2 T i’ w n°
f”(O):f In?(sinf)dt = =In®2+ = — = =In’2+ —
0 2 46 2 24

5 Convexité logarithmique

!
17> Puisque f est de classe € est strictement positive, il suffit de prouver que (Inof)” = 0. Avec h = Inof, on a h' = fT et

1" pl2
Bt fffzf

. On utilise I'inégalité de Cauchy-Schwarz, plutot sur un segment [e,7/2] que sur I'intervalle 10,7/2] (ce se-

w2

rait faisable en justifiant qu’on peut définir un produit scalaire avec f.g sur un bon espace de fonctions...)
0

Soit € €]0,/2[, on a, pour x € I,

2

/2 /2 2 w2
( f (Insin #) (sin t)th) = ( f ((nsin 1) (sin *'?) ((sin t)X/Z)dt) < ( f (Insin £)?(sin t)th) . ( f
£ € € €

/2

(sin t)xdt)

Lorsque £ — 0, on obtient f”?(x) < f(x)f"(x) pour tout x € I, et ainsi (Inof)” > 0. La fonction f est logarithmiquement
convexe.

18 > Onalarelation (x+1) f(x) = (x +2) f(x + 2) pour tout x € I, donc pour x = 0. On en déduit, lorsque x = 0 (et ainsi 2x aussi),

Cx+Df2x) =R2x+2) f2x+2) et In@x+1)+ f(x) =InRx+2) + f(x+1)

Onadoncf(x+l)—f(x):lngii% pour tout x = 0. Pour x=0et k€N, on a

2x+2k+1

f(x+k+1)—f(x+lc):ln2 k12

En sommant ces relations pour k allantde 0 a p — 1, on obtient

P=l o ox+2k+1

e+ p) == kzbl 2x+2k+2

19> Onan-1<n<n+x<n+p.Larelation demandée est exactement la formule des pentes pour une fonction convexe (enfin
deux fois la formule avec n—1<n<n+xetn<n+x< n+ p lorsque p # x. On justifie donc que f est convexe. On a
f"(x) =4(nof)"(2x) = 0 puisque f est logarithmiquement convexe.

On peut alors utiliser la question précédente pour encadrer w Ona f(n)— f(n-1)=1In 2n—1 de limite nulle
; . P2l 2n+2k+1

1 tend +o0 et +p)- In

orsque n tend vers +oo et f(n+p)— f(n) = ;;) I 2k12

.Ilya p termes (p est fixé), chacun tend vers 0 donc leur somme

également. On en déduit que 3 :
lim M:Oetainsi lim f(n+x)—f(n)=
n—+oo X n—+oo
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20 >

21>

22>

» La fonction f est bien une solution au probleme posé. Considérons / une fonction logarithmiquement convexe qui
vérifié (1) et telle que h(0) = 7.

« On considére comme précédemment 7 : x — In(h(2x)). On vérifie que & est bien convexe sachant que Inoh est convexe
(il suffit de I'écrire - on ne peut pas a priori parler de la dérivée seconde car on n’a pas d’hypotheése de dérivabilité).

e Onah(0) = f(0) = % En en déduit par récurrence grace a la formule (1) que pour tout n €N, h(n) = f(n).
e On peut refaire les questions précédentes, ce qui permet d’en déduire nliIP h(n+ x) — h(n) = 0 pour tout x > 0. Par
—+00

différence avec la méme limite pour f, on obtient que
lim h(n+x)—f(n+x)+ f(n)—h(n)=0
n—+oo

Avec I'égalité sur les entiers, on en déduit que nhIP h(n+x) - f(n+x)=0
—+00

« La fonction / vérifie la méme relation qu’en question 18 que f. Par différence, on en déduit que
Vx=0,peN*, f(x+p) - f(x) = h(x+ p) — h(x)

On a donc h(x) —f (x) =fz(x +p)— f(x+ p). Ce dernier terme tend vers 0 lorsque p tend vers +oo. On en déduit donc que,
pour tout x >0, f(x) = h(x) etainsi, f(2x) = h(2x) pour tout x > 0.
On a dongc, pour tout x > 0, h(x) = f(x). Cette relation reste vraie sur ] — 1,0] grace a la relation (1) :

x+2 x+2
Vxe]l-1,0], f(x) = mf(x+l) = mh(x+ 1) = h(x).

On peut enfin en conclure que f = h et que donc f est la seule fonction vérifiant les propriétés demandées.
On essaie de se ramener aux questions précédentes. Soit g une fonction qui vérifie, pour tout t > -7, (¢ + T)g(#) = (t+2T)g(t+
2T). En simplifiant par T, on a, (% + l)g(T%) = (% +2)g(T(% +2)). Si on note w : t — g(T.u), cela revient a, pour tout

u>-1, (u+ 1w = (w+2)w(u+2). On ajuste en prenant v(u) = % %((8)) afin d’avoir la condition v(0) = % On vérifie que

g log-convexe entraine w et v log-convexe. On en déduit que v = f. Ainsi g(Tu) = Cf(u) pour une certaine constante et
gn=Cf (%) pour tout ¢t > —T. Réciproquement, ces fonctions conviennent toutes, quelle que soit la constante C.

Avec t = —T, on aurait h(—T) = 0 et & ne serait pas logarithmiquement convexe car pas strictement positive.
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