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1 Calcul de σ(1)

1 ▷ Si |x| É 1 alors

∣∣∣∣ xk

k2

∣∣∣∣É 1
k2 de

∑ xk

k2 converge. Si |x| > 1, la série diverge grossièrement. La fonction σ est définie sur [−1,1]. Pour

tout k ∈N∗, uk : x 7→ xk

x2 est continue sur [−1,1] et |uk (x)| É 1
k2 donc

∑
uk converge normalement sur [−1,1] et σ est continue

sur [−1,1].

2 ▷ Avec une double intégration par parties, on obtient∫π

0

(
αt 2 +βt

)
cos(nt )dt = (−1)n(2πα+β)−β

n2

En choisissant β=−1 et α= 1
2π , on obtient,

∀n ∈N∗,
∫π

0

(
1

2π
t 2 − t

)
cos(nt )dt = 1

n2

On calcule, pour t ∈]0,π],

2sin

(
t

2

)
.

n∑
k=1

cos(kt ) =
n∑

k=1
2sin

(
t

2

)
cos(kt ) =

n∑
k=1

(
sin

(
k + 1

2

)
t − sin

(
k − 1

2

)
t

)
= sin

(
n + 1

2
)

)
t − sin

(
1

2
t

)

ce qui donne, pour tout n ∈N∗ et t ∈]0,π],
n∑

k=1
cos(kt ) =

sin

(
2n +1

2
t

)
2sin

(
t

2

) − 1

2
.

3 ▷ le premier résultat a déjà été vu plusieurs fois... on écrit alors

n∑
k=1

1

k2 =
n∑

k=1

∫π

0

(
1

2π
t 2 − t

)
cos(kt )dt =

∫π

0

(
1

2π
t 2 − t

)(
n∑

k=1
cos(kt )

)
dt

On note g (t ) = 1
2π t 2 − t . On a alors (l’intégrale est faussement impropre en 0) :

n∑
k=1

1

k2 =
∫π

0

g (t )

2sin(t/2)
sin

(
(2n +1)

t

2

)
dt − 1

2

∫π

0
g (t )dt .

On note φ(t ) = g (t )
2sin(t/2) =

1
2π

t 2 −2πt
2sin(t/2) =

t 2 −2πt )
4πsin(t/2) pour t ∈]0,π]. On a

∫2π

0
g (t )dt =

[
t 3

6π
− t 2

2

]π
0
= π2

6
− π2

2
=−π2

3

Si on montre que φ se prolonge en une fonction de classe C 1 sur [0,π], on obtiendra

lim
n→+∞

n∑
k=1

1

k2 =σ(1) = 0− 1

2

π2

3
= π2

6
.

La fonction φ est de classe C 1 sur ]0,π]

• φ se prolonge par continuité en 0 : φ(t ) ∼
t→0

−2πt
2πt =−1.

• φ′ admet une limite finie en 0 :

∀t ∈]0,π],φ′(t ) = (2t −2π)sin(t/2)− (1/2)
(
t 2 −2πt

)
cos(t/2)

4πsin2(t/2)
= 4(t −π)sin(t/2)− (

t 2 −2πt
)

cos(t/2)

8πsin2(t/2)

On effectue un développement limité au voisinage de 0 du numérateur :

4(t −π)sin(t/2)− (
t 2 −2πt

)
cos(t/2) = 4t

(
t/2+o

(
t 2))−4π

(
t/2+o

(
t 2))− t 2(1+o(t ))+2πt (1+o(t )) = t 2 +o

(
t 2) ∼

t→0
t 2

cela donne φ′(t ) ∼
t→0

t 2

8π(t/2)2 = 1
2π . Ainsi φ′ admet une limite finie en 0

Tout ces résultats permettent de dire que la fonction φ, prolongée en 0 par la valeur −1 est de classe C 1 sur [0,π].
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2 Équivalents

4 ▷ Soit h(t ) = (sin t )x . La fonction h est bien définie et continue sur ]0,π/2]. Puisque lim
t→0

sin t

t
= 1, on a, pour x ∈R, lim

t→0

(sin t )x

t x = 1

et (sin t )x ∼
t→0

t x . La fonction h est donc intégrable sur ]0,π] si et seulement si x > −1 donc x ∈ I . Soit ε > 0 et x > −1 (ainsi

x +1 > 0)∫π/2

ε
(sin t )x+1 sin tdt = [−cos t (sin t )x+1]π/2

ε + (x +1)
∫π/2

ε
(sin t )x cos2 tdt = cosε(sinε)x+1 + (x +1)

∫π/2

ε
(sin t )x (1− sin2 t )dt .

Puisque x +1 > 0, lorsque ε tend vers 0, on obtient f (x +2) = (x +1)( f (x)− f (x +2)), ce qui donne (x +2) f (x +2) = (x +1) f (x).

5 ▷ On applique le théorème de dérivation pour les intégrales à paramètre - en se plaçant sur un intervalle [a,+∞[ avec a > −1
(le problème d’intégralité arrive pour x =−1). On note h(x, t ) = (sin t )x = exp(x lnsin t ).

• pour tout x Ê a, x 7→ h(x, t ) est de classe C 2 sur [a,+∞] avec ∂h
∂x (x, t ) = (lnsin t )(sin t )x et ∂2h

∂x2 (x, t ) = (lnsin t )2(sin t )x ,

• les fonctions t 7→ h(x, t ), t 7→ ∂h
∂x (x, t ) et t 7→ ∂2h

∂x2 (x, t ) sont continues sur ]0, π2 ]. De plus, pour tout x Ê a, t 7→ h(x, t ) est

intégrable sur ]0, π2 ].

• puisque lim
t→0

sin t = 0, on a sin t ∼
t→0

t et ln(sin t ) ∼
t→0

ln t . Ainsi ∂h
∂x (x, t ) ∼

t→0
t x ln t . Puisque x Ê a > −1, il existe b ∈]−1, a[.

Alors t x ln t o
t→0

(t b) donc t 7→ ∂h
∂x (x, t ) est intégrable sur ]0, π2 ].

• Pour tout x Ê a et x ∈]0, π2 ], ∣∣∣∣∂2h

∂x2 (x, t )

∣∣∣∣= (ln2 sin t )(sin t )x É (ln2 sin t )(sin t )a =φ(t )

La fonction φ est continue sur ]0, π2 ], φ(t ) ∼
t→0

(ln2 sin t )t a = o
t→0

(t b) si on choisit b ∈]−1, a[. Elle est donc intégrable sur

]0, π2 ].

On a toutes les hypothèses pour appliquer le théorème de dérivation. La fonction f est de classe C 2 sur [a,+∞[ pour tout
a >−1 donc sur I et on obtient les deux premières dérivées en dérivant sous le signe somme. Notamment, puisque pour tout
t ∈]0, π2 ], lnsin t É 0, on obtient que f ′ est négative et f ′′ positive. La fonction f est décroissante et convexe sur I .

6 ▷ On réutilise la relation (1). On a, par continuité de f en 1, lim
x→−1

(x +2) f (x +2) = f (1) = 1 ce qui donne f (x) ∼
x→−1

1
x .

7 ▷ Pour tout n ∈ N, la relation (1) donne (n + 1) f (n) = (n + 2) f (n + 2). En multipliant par f (n + 1), on a, pour tout n ∈ N, (n +
1) f (n) f (n+1) = (n+2) f (n+1) f (n+2). La suite ((n+1) f (n) f (n+1))n∈N est donc constante égalé à son premier terme f (0) f (1) =
π
2 . On a donc, pour tout n ∈N, (n +1) f (n) f (n +1) = π

2 .

Par décroissance et positivité, pour tout n ∈N, on a f (n +1)2 É f (n) f (n +1) É f (n)2. Cela donne, de nouveau par positivité,

∀n ∈N∗,

√
π

2(n +1)
É f (n) É

√
π

2n

Pour x > 0 (par exemple), on a bxc É x < bxc+1. Si on note temporairement n = bxc, on a f (n +1) É f (x) É f (n) et ainsi√
π

2(n +2)
É f (x) É

√
π

2n

ce qui donne

∀x > 0,

√
π

2(bxc+2)
É f (x) É

√
π

2bxc
chaque terme encadrant étant équivalent à

√
π

2x lorsque x →+∞, on en déduit que f (x) ∼
x→+∞

√
π

2x .

8 ▷ on fait un joli dessin avec tout ça...

3 Développement en série entière

9 ▷ • On note gn(t ) = (ln(sin t ))n si n ∈N et t > 0. Les fonctions gn sont continue sur ]0, π2 ]. Comme précédemment gn(t ) ∼
t→0

lnn t

et gn(t ) = o
t→0

(
1p

t

)
donc gn est intégrable sur ]0, π2 ].

• En effectuant le changement de variable affine « t = π
2 − t » dans l’intégrale D1, on obtient bien D1 =

∫π/2

0
ln(cos t )dt .
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10 ▷ On a f ′(0) =
∫π/2

0
ln(sin t )dt = D1. On a donc

2D1 =
∫π/2

0
ln(sin t )dt +

∫π/2

0
ln(cos t )dt =

∫π/2

0
ln(sin t cos t )dt =

∫π/2

0
ln(

1

2
sin2t )dt =

∫π/2

0
ln(sin2t )dt − π

2
ln2

On effectue le changement de variable linéaire « t = 2u » dans cette dernière intégrale. Cela donne

2D1 = 1

2

∫π

0
ln(sinu)du − π

2
ln2

Or
∫π

0
ln(sinu)du =

∫π/2

0
ln(sinu)du +

∫π

π/2
ln(sinu)du et un changement affine u =π− t dans la seconde intégrale permet de

retrouver D1. Ainsi
∫π

0
lnsinudu = 2D1. Finalement , on

2D1 = 1

2
(2D1)− π

2
ln2 c’est-à-dire D1 =−π

2
ln2.

On a f ′(1) =
∫π/2

0
ln(sin t )(sin t )dt . On calcule cette intégrale par intégration par parties. Soit ε ∈]0,π/2],

∫π/2

ε
ln(sin t )(sin t )dt = [(−cos t ) ln(sin t )]π/2

ε +
∫π/2

ε

cos2 t

sin t
dt = cosε ln(sinε)+

∫π/2

ε

cos2 t

sin t
dt

On calcule cette dernière intégrale en effectuant un changement de variable u = cos t (l’application arccosinus est bijective et
C 1 de [0,1[ sur ]0,π/2]) :∫π/2

ε

cos2 t

sin t
dt =

∫π/2

ε

cos2 t

sin2 t
(sin t )dt =

∫π/2

ε

cos2 t

1−cos2 t
(sin t )dt =−

∫0

cosε

u2

1−u2 du

on continue : ∫cosε

0

u2 −1+1

1−u2 du =−cosε+ 1

2

∫cosε

0

1

1+u
+ 1

1−u
du =−cosε+ 1

2
ln(1+cosε)− 1

2
ln(1−cosε)

ce qui donne ∫π/2

ε
ln(sin t )(sin t )dt = cosε ln(sinε)−cosε+ 1

2
ln(1+cosε)− 1

2
ln

(
1

2
sin2 ε/2

)
= cosε ln

(
2sin

ε

2
cos

ε

2

)
−cosε+ 1

2
ln

1+cosε

2
− ln(sin

ε

2
)

= (ln2cos
ε

2
−1)cosε+ (cosε−1)lnsin

ε

2

puisque (cosε−1)lnsin ε
2 ∼
ε→0

−ε2

2 ln( ε2 ), sa limite est nulle. Finalement on obtient f ′(1) = ln2−1 .

Remarque : on peut aussi intégrer sin t en 1−cos t afin d’avoir directement des limites en 0 et ainsi obtenir∫π/2

0
ln(sin t )(sin t )dt =

∫π/2

0

cos t (cos t −1)

sin t
dt

et travailler sur cette intégrale (qui est bien convergente en 0) et qui donne des calculs un peu plus simples et rapides - si on y
pense.

11 ▷ on ne voit pas trop quel changement de variable faire autre que u = ln(sin t ) sauf qu’il donne des valeurs dans ]−∞,0]. On
prend plutôt u = − ln(sin t ) donc « t = arcsine−u ». L’application u 7→ arcsin(e−u) est de classe C 1 et réalise une bijection de
]0,+∞[ sur ]0, π2 [ ce qui justifie le changement de variable. On obtient alors

Dn =
∫0

+∞
(−u)n −e−u√

1− (e−u)2
du = (−1)n

∫+∞

0

un√
e2u −1

du.

On doit maintenant montrer que Jn =
∫+∞

0

un√
e2u −1

du ∼
n→+∞n!. On montre par récurrence (avec une intégration par parties)

que Kn =
∫+∞

0

un√
e2u

du =
∫+∞

0
une−udu = n!. On doit donc montrer que la différence est négligeable devant n!.

Jn −Kn =
∫+∞

0
un

(
1√

e2u −1
−e−u

)
du =

∫+∞

0
une−u

(
eu −

√
e2u −1√

e2u −1

)
du =

∫+∞

0
une−u

 1(
eu +

√
e2u −1

)√
e2u −1

du
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En utilisant la minoration ex Ê 1+x pour tout x Ê 0, on a e2u −1 Ê 2u si u > 0. Cela permet de majorer :

0 É Jn −Kn É
∫+∞

0
une−u

(
1

e2u −1

)
du É 1

2

∫+∞

0
une−u 1

u
du = 1

2

∫+∞

0
un−1e−u 1

u
du = 1

2
(n −1)!

Ainsi 0 É Jn
n! −1 É 1

2n et par encadrement, lim
n→+∞

Jn

n!
= 1. Cela donne (−1)nDn ∼

n→+∞n! .

12 ▷ Si t ∈]0, π2 ], (sin t )x = exp(x lnsin t ) =
+∞∑
n=0

(lnsin t )n xn

n!
. On note hn(t ) = (lnsin t )n xn

n! .

• la série de fonction
∑

hn converge simplement sur ]0, π2 ] et sa somme (la fonction t 7→ (sin t )x est continue sur ]0, π2 )

• pour tout n ∈N, hn est intégrable sur ]0, π2 ] et∫π/2

0
hn(t )dt = (−1)nDn

|x|n
n!

∼
n→+∞ |x|n

On a donc convergence de
∑∫π/2

0
|hn(t )|dt si |x| < 1.

Tout cela permet d’utiliser le théorème d’intégration terme à terme qui donne

∀x ∈]−1,1[, f (x) =
+∞∑
n=0

Dn

n!
xn .

4 Convergence de suite de fonctions

13 ▷ si on note m = min(a,b), on a a2 cos2 x +b2 sin2 x Ê m2(cos2 x + sin2 x) = m2 > 0. La fonction x 7→ a2 cos2 x +b2 sin2 x est de
classe C 1 sur R à valeurs strictement positives. Par composition, Ψ est également de classe C 1 sur R. On a de plus

∀x ∈R,Ψ′(x) = 2(b2 −a2)sin x cos x

a2 cos2 x +b2 sin2 x
= (b2 −a2)sin2x

a2 cos2 x +b2 sin2 x

Pour la série, il est plus avantageux de commencer la somme à 0 puisque sin(0) = 0 : la série
∑

(ρe2i x )k converge absolument

car |ρ| < 1 (on a en effet − a
a +b < ρ < b

b +a avec a
a +b et b

a +b dans ]0,1[)

4
+∞∑
k=0

ρk sin(2kx) = Im

(
4
+∞∑
k=0

(
ρe2i x

)k
)
= 4Im

(
1

1−ρe2i x

)
= 4

2i

(
1

1−ρe2i x
− 1

1−ρe−2i x

)

= 4

2i
ρ

e2i x −e−2i x

1−2ρ cos(2x)+ρ2 = 4
ρ sin(2x)

1−2ρ cos(2x)+ρ2 = 4
ρ sin(2x)

1−2ρ(2cos2 x −1)+ρ2

= 4
ρ sin(2x)

1+2ρ+ρ2 −4ρ cos2 x
= 4

ρ sin(2x)

(1+ρ)2 −4ρ cos2 x
= 4

b −a

b +a

sin(2x)

4b2

(a +b)2 −4
b −a

a +b
cos2 x

= (b −a)(b +a)sin(2x)

b2 − (b2 −a2)cos2 x
= (b2 −a2)sin(2x)

a2 cos2 x +b2(1−cos2 x)
=Ψ′(x)

14 ▷ Pour tout x ∈R, Ψ(x)−Ψ(0) =
∫x

0
Ψ′(t )dt . Si on note vk (x) = ρk sin(2kx), on a |vk (x)| É |ρ|k donc

∑
vk converge normalement

sur R. Cela permet de permuter somme et intégrale :

Ψ(x)−2ln a = 4
+∞∑
k=1

ρk
∫x

0
sin(2kt )dt = 4

+∞∑
k=1

ρk 1−cos(2kx)

2k

Toujours puisque |ρ| < 1, les séries
∑ cos(2kx)

k
ρk et

∑ 1

k
ρk converge, ce qui permet de séparer la somme en deux :

Ψ(x) = 2ln a +2
+∞∑
k=1

ρk

k
−2

+∞∑
k=1

cos(2kx)

k
ρk = 2ln a −2ln(1−ρ)−2

+∞∑
k=1

cos(2kx)

k
ρk

et ln(1−ρ) = ln
(

2a
a +b

)
donc 2ln a − ln(1−ρ) = 2ln a +b

2 . Finalement

∀x ∈R,Ψ(x) = 2ln

(
a +b

2

)
−2

+∞∑
k=1

cos(2kx)

k
ρk .
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15 ▷ On pourrait être tenté de faire apparaître une somme double et intégrer... mais là on déborde sérieusement du programme.
On choisit de conserver l’un des Ψ(x) et d’utiliser la somme pour le second :

∀x ∈R,Ψ2(x) = 2ln

(
a +b

2

)
Ψ(x)−2

+∞∑
k=1

Ψ(x)cos(2kx)

k
ρk .

• on s’intéresse au premier terme. Avec wk (x) = ρk

k cos(2kx), on a |wk | É |ρ|k et
∑

wk converge normalement sur [0,π].
Cela permet de permuter somme et intégrale (toutes les fonctions qui apparaissent sont continues)∫π

0
Ψ(x)dx = 2π ln

(
a +b

2

)
−

+∞∑
k=1

ρk

k

∫π

0
cos(2kx)dx

et chacune des intégrales est nulle donc
∫π

0
Ψ(x)dx = 2π ln

(
a +b

2

)
• On fait de même avec zk (x) = Ψ(x)cos(2kx)

k ρk : on a |zk | É M |ρ|k où M est un majorant de |Ψ| sur [0,π] (la fonction est
continue). On peut donc écrire ∫π

0

+∞∑
k=1

Ψ(x)cos(2kx)

k
ρk dx =

+∞∑
k=1

ρk

k

∫π

0
Ψ(x)cos(2kx)dx

On s’intéresse aux intégrales :∫π

0
Ψ(x)cos(2kx)dx = 2ln

(
a +b

2

)∫π

0
cos(2kx)dx −2

∫π

0

(+∞∑
p=1

cos(2px)cos(2kx)

k
ρk

)
dx.

On a de nouveau convergence normale de
∑

hp (x) sur [0,π] avec hp (x) = cos(2px)cos(2kx)
k ρk , ce qui permet de per-

muter somme et intégrale. Il reste à calculer, pour p,k Ê 1∫π

0
cos(2px)cos(2kx)dx = 1

2

∫π

0
cos(2(k +p)x)+cos(2(k −p)x)dx

L’intégrale vaut 0 si k 6= p et π
2 si k = p. Cela donne

∫π

0
Ψ(x)cos(2kx)dx =−2.

π

2

ρk

k
=−πρk

k

Toutes ces permutations permettent d’obtenir∫π

0
Ψ2(x)dx = 2π ln2

(
a +b

2

)
−2

+∞∑
k=1

ρk

k

∫π

0
Ψ(x)cos(2kx)dx = 2π ln2

(
a +b

2

)
−2

+∞∑
k=1

ρk

k

(
−πρk

k

)

c’est-à-dire ∫π

0
Ψ2(x)dx = 4π ln2

(
a +b

2

)
+2π

+∞∑
k=1

ρ2k

k2 = 4π ln2
(

a +b

2

)
+2πσ(ρ2).

16 ▷ On a directement lim
n→+∞Ψn(t ) = ln(sin2 t ) = 2ln(sin t ). On rappelle que

f ′′(0) =
∫π/2

0
ln2(sin t )dt

On serait donc fortement dirigé vers la suite d’intégrales
∫π/2

0
Ψn(t )2dt qui devrait converger vers

∫π/2

0
4ln2(sin t )dt = 4 f ′′(0).

On cherche donc à étudier lim
n→+∞

∫π/2

0
Ψn(t )2dt

• la suite de fonctions continues sur ]0,π/2], Ψ2
n , converge simplement sur ]0,π/2] vers la fonction g : t 7→ 4ln2(sin t )

• la fonction g est continue sur ]0,π/2]

• on doit dominer indépendamment de n Ê 1. On a a2
n cos2 t +b2

n sin2 t É 1 et a2
n cos2 t +b2

n sin2 t Ê b2
n sin2 t Ê b2

1 sin2 t =
1
4 sin2 t . Cela donne

ln

(
1

4
sin2 t

)
ÉΨn(t ) É 0
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et 0 ÉΨ2
n(t ) É ln2

(
1
4 sin2 t

)
=φ(t ). On prouve que φ est intégrable sur ]0,π/2]. Il y est continue et

ln

(
1

4
sin2 t

)
=− ln4+2ln(sin t ) ∼

t→0
2ln(t )

et φ(t ) ∼
t→0

4ln2 t = o
t→0

(
1p

t

)
Le théorème de convergence dominée permet de conclure et ainsi lim

n→+∞

∫π/2

0
Ψ2

n(x)dx = 4
∫π/2

0
ln2(sin t )dt . De plus, puisque

Ψn(π−x) =Ψn(x), on a, par changement de variable
∫π

0
Ψ2

n(x)dx = 2
∫π/2

0
Ψ2

n(x)dx. LA question précédente donne

∫π

0
Ψ2

n(x)dx = 4π ln2
(

an +bn

2

)
+2πσ

(
(bn −an)2/(an +bn)2)= 4π ln2 2+2πσ

(
(bn −an)2) car an +bn = 1.

Puisque bn −an ∈ [0,1[ et que σ est continue en 1, lorsque n tend vers +∞, on obtient

8
∫π/2

0
ln2(sin t )dt = 4π ln2 2+2πσ(1)

Cela donne

f ′′(0) =
∫π/2

0
ln2(sin t )dt = π

2
ln2 2+ π

4

π2

6
= π

2
ln2 2+ π3
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5 Convexité logarithmique

17 ▷ Puisque f est de classe C 2 est strictement positive, il suffit de prouver que (ln◦ f )′′ Ê 0. Avec h = ln◦ f , on a h′ = f ′
f et

h′′ = f f ′′− f ′2

f 2 . On utilise l’inégalité de Cauchy-Schwarz, plutôt sur un segment [ε,π/2] que sur l’intervalle ]0,π/2] (ce se-

rait faisable en justifiant qu’on peut définir un produit scalaire avec
∫π/2

0
f .g sur un bon espace de fonctions...)

Soit ε ∈]0,π/2[, on a, pour x ∈ I ,(∫π/2

ε
(lnsin t )(sin t )x dt

)2

=
(∫π/2

ε

(
(lnsin t )(sin t )x/2)((sin t )x/2)dt

)2

É
(∫π/2

ε
(lnsin t )2(sin t )x dt

)
.

(∫π/2

ε
(sin t )x dt

)
Lorsque ε → 0, on obtient f ′2(x) É f (x) f ′′(x) pour tout x ∈ I , et ainsi (ln◦ f )′′ Ê 0. La fonction f est logarithmiquement
convexe.

18 ▷ On a la relation (x +1) f (x) = (x +2) f (x +2) pour tout x ∈ I , donc pour x Ê 0. On en déduit, lorsque x Ê 0 (et ainsi 2x aussi),

(2x +1) f (2x) = (2x +2) f (2x +2) et ln(2x +1)+ f̃ (x) = ln(2x +2)+ f̃ (x +1)

On a donc f̃ (x +1)− f̃ (x) = ln 2x +1
2x +2 pour tout x Ê 0. Pour x Ê 0 et k ∈N, on a

f̃ (x +k +1)− f̃ (x +k) = ln
2x +2k +1

2x +2k +2

En sommant ces relations pour k allant de 0 à p −1, on obtient

f̃ (x +p)− f̃ (x) =
p−1∑
k=0

ln
2x +2k +1

2x +2k +2

19 ▷ On a n −1 < n < n + x É n +p. La relation demandée est exactement la formule des pentes pour une fonction convexe (enfin
deux fois la formule avec n − 1 < n < n + x et n < n + x < n + p lorsque p 6= x. On justifie donc que f̃ est convexe. On a
f̃ ′′(x) = 4(ln◦ f )′′(2x) Ê 0 puisque f est logarithmiquement convexe.

On peut alors utiliser la question précédente pour encadrer
f̃ (n +x)− f̃ (n)

x . On a f̃ (n)− f̃ (n −1) = ln 2n −1
2n de limite nulle

lorsque n tend vers +∞ et f̃ (n+p)− f̃ (n) =
p−1∑
k=0

ln
2n +2k +1

2n +2k +2
. Il y a p termes (p est fixé), chacun tend vers 0 donc leur somme

également. On en déduit que

lim
n→+∞

f̃ (n +x)− f̃ (n)

x
= 0 et ainsi lim

n→+∞ f̃ (n +x)− f̃ (n) = 0
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20 ▷ • La fonction f est bien une solution au problème posé. Considérons h une fonction logarithmiquement convexe qui
vérifié (1) et telle que h(0) = π

2 .

• On considère comme précédemment h̃ : x 7→ ln(h(2x)). On vérifie que h̃ est bien convexe sachant que ln◦h est convexe
(il suffit de l’écrire - on ne peut pas a priori parler de la dérivée seconde car on n’a pas d’hypothèse de dérivabilité).

• On a h(0) = f (0) = π
2 . En en déduit par récurrence grâce à la formule (1) que pour tout n ∈N, h(n) = f (n).

• On peut refaire les questions précédentes, ce qui permet d’en déduire lim
n→+∞ h̃(n + x)− h̃(n) = 0 pour tout x > 0. Par

différence avec la même limite pour f̃ , on obtient que

lim
n→+∞ h̃(n +x)− f̃ (n +x)+ f̃ (n)− h̃(n) = 0

Avec l’égalité sur les entiers, on en déduit que lim
n→+∞ h̃(n +x)− f̃ (n +x) = 0

• La fonction h̃ vérifie la même relation qu’en question 18 que f̃ . Par différence, on en déduit que

∀x Ê 0, p ∈N∗, f̃ (x +p)− f̃ (x) = h̃(x +p)− h̃(x)

On a donc h̃(x)− f̃ (x) = h̃(x+p)− f̃ (x+p). Ce dernier terme tend vers 0 lorsque p tend vers +∞. On en déduit donc que,
pour tout x > 0, f̃ (x) = h̃(x) et ainsi, f (2x) = h(2x) pour tout x > 0.

On a donc, pour tout x > 0, h(x) = f (x). Cette relation reste vraie sur ]−1,0] grâce à la relation (1) :

∀x ∈]−1,0], f (x) = x +2

x +1
f (x +1) = x +2

x +1
h(x +1) = h(x).

On peut enfin en conclure que f = h et que donc f est la seule fonction vérifiant les propriétés demandées.

21 ▷ On essaie de se ramener aux questions précédentes. Soit g une fonction qui vérifie, pour tout t >−T, (t+T )g (t ) = (t+2T )g (t+
2T ). En simplifiant par T , on a,

(
t
T +1

)
g

(
T t

T

)
=

(
t
T +2

)
g

(
T ( t

T +2)
)
. Si on note w : t 7→ g (T.u), cela revient à, pour tout

u >−1, (u +1)w(u) = (w +2)w(u +2). On ajuste en prenant v(u) = π
2

w(u)
w(0) afin d’avoir la condition v(0) = π

2 . On vérifie que

g log-convexe entraîne w et v log-convexe. On en déduit que v = f . Ainsi g (Tu) = C f (u) pour une certaine constante et
g (t ) =C f ( t

T ) pour tout t >−T . Réciproquement, ces fonctions conviennent toutes, quelle que soit la constante C .

22 ▷ Avec t =−T , on aurait h(−T ) = 0 et h ne serait pas logarithmiquement convexe car pas strictement positive.
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