I Fonctions harmoniques : quelques propriétés

- **Q1.** La fonction nulle est dans l'ensemble. Par linéarité des dérivations, on prouve la stabilité par combinaisons linéaires.
- **Q 2.** Si f est de classe \mathscr{C}^{∞} , on peut permuter les dérivations. On a alors, si $k \in [1; n]$ et $g = \frac{\partial f}{\partial x_k}$,

$$\frac{\partial(\Delta f)}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \right) = \sum_{i=1}^n \frac{\partial}{\partial x_k} \left(\frac{\partial^2 f}{\partial x_i^2} \right) = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} \left(\frac{\partial f}{\partial x_k} \right) = \Delta g.$$

Si f est harmonique alors g l'est également et ainsi toutes les dérivées partielles de f sont dans $\mathcal{H}(U)$. En réitérant (ou en faisant directement la même chose sur une dérivée partielle d'ordre quelconque de f), on obtient le même résultat pour toute dérivée partielle à un ordre quelconque de f.

Q 3. On calcule Δf^2 . On a

$$\frac{\partial f^2}{\partial x_i} = 2f \frac{\partial f}{\partial x_i} \text{ et } \frac{\partial^2 f^2}{\partial x_i^2} = 2\left(\frac{\partial f}{\partial x_i}\right)^2 + f \cdot \frac{\partial^2 f}{\partial x_i^2},$$

et ainsi

$$\Delta(f^2) = f \cdot \Delta f + 2 \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)^2$$

Si $f \in \mathcal{H}(U)$, alors $\Delta(f^2) = 2\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2$. Ce terme est nul si et seulement si, pour tout

 $i \in [1; n]$, $\frac{\partial f}{\partial x_i}$ est nulle sur U. L'ensemble U étant un ouvert connexe par arcs, cela donne f constante. Le seules fonctions pour lesquelles f et f^2 sont dans $\mathcal{H}(U)$ lorsque U est connexe par arcs sont les fonctions constantes.

Q 4. Les fonctions $p_i: x \mapsto x_i$ sont dans $\mathcal{H}(U)$. On a $p_i^2: x \mapsto x_i^2$ est $\Delta(p_i^2) = 2$. Le produit de deux fonctions harmoniques n'est donc pas forcément une fonction harmonique.

II Exemples de fonctions harmoniques

II.A - Variables séparables

Q 5. On vérifie facilement que pour tout $(x, y)_1 \mathbb{R}^2$, $\Delta f(x, y) = u''(x) v(y) + u(x) v''(y) = 0$. Puisque f n'est pas la fonction nulle, il existe $y_0 \in \mathbb{R}$ tel que $v(y_0) \neq 0$. On a alors, pour tout $x \in \mathbb{R}$, $v(x_0)u''(x) + v''(y_0)u(x) = 0$. On peut poser $\lambda = \frac{v''(y_0)}{v(y_0)}$ (puisque $v(y_0) \neq 0$). Alors, pour tout $x \in \mathbb{R}$, on a $u''(x) + \lambda u(x) = 0$. Cela donne alors, $u''(x) = -\lambda u(x)$, puis, pour tout $(x, y) \in \mathbb{R}^2$, $-\lambda u(x)v(y) + u(x)v''(y) = u(x)(v''(y) - \lambda v(y)) = 0$

Puisque u n'est pas la fonction nulle, il existe $x_0 \in \mathbb{R}$ tel que $u(x_0) \neq 0$ et alors, pour tout $y \in \mathbb{R}$, $v''(y) - \lambda v(y) = 0$.

- **Q 6.** Réciproquement, s'il existe $\lambda \in \mathbb{R}$ tel que $u'' + \lambda u = 0$ et $v'' \lambda v = 0$, alors $\Delta f(x, y) = 0$ pour tout $(x, y) \in \mathbb{R}^2$. On distingue 3 cas :
 - $\lambda > 0$. On note $\lambda = \omega^2$. On a alors, pour tout $(x, y) \in \mathbb{R}^2$,

$$f(x, y) = (A\cos(\omega x) + B\sin(\omega x)) \cdot (C\exp(\omega y) + D\exp(-\omega y))$$

où A, B, C et D sont des réels quelconques

$$-\lambda = 0$$
,

$$f(x, y) = (Ax + B)(Cy + D)$$

$$-\lambda = -\omega^2 < 0$$

$$f(x, y) = (A\cos(\omega y) + B\sin(\omega y)) \cdot (C\exp(\omega x) + D\exp(-\omega x))$$

II.B - Coordonnées polaires

Q7. On note

1

$$\varphi : \left\{ \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{R} & \to & R^2 \\ (r, \theta) & \mapsto & (r \cos \theta, r \sin \theta) \end{array} \right.$$

La fonction φ est de classe \mathscr{C}^2 sur l'ouvert $U = \mathbb{R}_+^* \times \mathbb{R}$ à valeurs dans l'ouvert $V = \mathbb{R}^2 \setminus \{(0,0)\}$. Par composition avec f, l'application g est de classe \mathscr{C}^2 sur U.

Q 8. On a, pour tout $(r, \theta) \in U$,

$$\begin{array}{ll} \frac{\partial g}{\partial r}(r,\theta) & = & \frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta).\cos(\theta) + \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta).\sin(\theta) \\ \frac{\partial g}{\partial \theta}(r,\theta) & = & \frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta).(-r\sin(\theta)) + \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta).(r\cos(\theta)) \end{array}$$

Q 9. On redérive... on a (en abrégeant l'écriture)

$$\frac{\partial^2 g}{\partial r^2} = \frac{\partial}{\partial r} \left(\cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y} \right) \\
= \cos(\theta) \cdot \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial x} \right) + \sin(\theta) \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial y} \right) \\
= \cos(\theta) \left(\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial x}{\partial r} + \frac{\partial^2 f}{\partial x \partial y} \frac{\partial y}{\partial r} \right) + \sin(\theta) \left(\frac{\partial^2 f}{\partial y \partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial^2 f}{\partial y^2} \cdot \frac{\partial y}{\partial r} \right) \\
= \cos(\theta) \left(\cos(\theta) \cdot \frac{\partial^2 f}{\partial x^2} + \sin(\theta) \frac{\partial^2 f}{\partial x \partial y} \right) + \sin(\theta) \left(\cos(\theta) \cdot \frac{\partial^2 f}{\partial y \partial x} + \sin(\theta) \frac{\partial^2 f}{\partial y^2} \right) \\
\frac{\partial^2 g}{\partial r^2} = \cos^2(\theta) \frac{\partial^2 f}{\partial x^2} + 2\sin(\theta) \cos(\theta) \frac{\partial^2 f}{\partial x \partial y} + \sin^2(\theta) \frac{\partial^2 f}{\partial y^2}$$

De même (ou presque car cette fois, il y a des termes en θ à dériver) :

$$\begin{split} \frac{\partial^2 g}{\partial \theta^2} &= (-r\sin\theta) \left((-r\sin\theta) \frac{\partial^2 f}{\partial x^2} + (r\cos\theta) \frac{\partial^2 f}{\partial x \partial y} \right) - r\cos\theta . \frac{\partial f}{\partial x} \\ &+ (r\cos\theta) \left((-r\sin\theta) \frac{\partial^2 f}{\partial x \partial y} + (r\cos\theta) \frac{\partial^2 f}{\partial y^2} \right) - r\sin\theta . \frac{\partial f}{\partial y} \\ &= r^2 \sin^2(\theta) \frac{\partial^2 f}{\partial x^2} - 2r^2 \sin(\theta) \cos(\theta) \frac{\partial^2 f}{\partial x \partial y} + r^2 \cos^2(\theta) \frac{\partial^2 f}{\partial y^2} \\ &- r \left(\cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y} \right) \end{split}$$

Q 10. On a alors

$$r^{2} \frac{\partial^{2} g}{\partial r^{2}} + \frac{\partial^{2} g}{\partial \theta^{2}} = r^{2} \Delta f - r \frac{\partial g}{\partial r}$$

ou encore, pour tout $(r, \theta) \in U$,

$$r^{2} \frac{\partial^{2} g}{\partial r^{2}}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) + \frac{\partial^{2} g}{\partial \theta^{2}}(r,\theta) = r^{2} \left((\Delta f)(r\cos\theta, r\sin\theta) \right)$$

Finalement f est dans $\mathcal{H}(V)$ si et seulement si, pour tout $(r,\theta) \in U$ (car $r^2 \neq 0$)

$$r^{2}\frac{\partial^{2} g}{\partial r^{2}}(r,\theta) + r\frac{\partial g}{\partial r}(r,\theta) + \frac{\partial^{2} g}{\partial \theta^{2}}(r,\theta) = 0$$

Puisque l'application φ est surjective, cela équivaut à dire que Δf est nulle sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

- **Q11.** La fonction g ne dépend donc que de r. Elle vérifie l'équation différentielle $r^2g''(r) + rg'(r) = 0$ ou encore $g''(r) + \frac{1}{r}g'(r) = 0$. La fonction g vérifie cette équation sur \mathbb{R}_+^* si et seulement si il existe $A \in \mathbb{R}$ tel que, pour tout r > 0, $g'(r) = A\exp(-\ln r) = \frac{1}{r}$ et il existe $A, B \in \mathbb{R}$ tels que $g(r) = A\ln r + B$. On en déduit alors que f est solution si et seulement si il existe $A, B \in \mathbb{R}$ tels que , pour tout $(x, y) \in V$, $f(x, y) = \frac{A}{2}\ln(x^2 + y^2) + B$.
- **Q 12.** On détermine A et B avec les équations $A \ln r_1 + B = a$ et $A \ln r_2 + B = b$. Cela donne $A = \frac{b-a}{\ln r_2 \ln r_1}$ et $B = \frac{a \ln r_2 b \ln r_1}{\ln r_2 \ln r_1}$

II.C - Variables polaires séparables

Q 13. si f n'est pas identiquement nulle, il existe $r_0 > 0$ tel que $u(r_0) \neq 0$. On a alors, pour tout $\theta \in \mathbb{R}$, $v(\theta) = \frac{1}{u(r_0)} f(r\cos\theta, r\sin\theta)$. On en déduit que $v(\theta + 2\pi) = v(\theta)$ pour tout $\theta \in \mathbb{R}$.

Q 14. On reporte les dérivées dans l'équation : cele donne, pour tout $(r, \theta) \in U$,

$$r^{2}u''(r)v(\theta) + ru'(r)v(\theta) + u(r)v''(\theta) = 0.$$

Il existe $r_0 > 0$ tel que $u(r_0) \neq 0$, ce qui donne, pour tout $\theta \in \mathbb{R}$,

$$v''(\theta) + \frac{1}{u(r_0)} \left(r_0^2 u''(r_0) + r_0 u'(r_0) \right) v(\theta) = 0$$

d'où l'équation différentielle $z'' + \lambda z$ avec $\lambda = \frac{1}{u(r_0)} \left(r_0^2 u''(r_0) + r_0 u'(r_0) \right)$. On a alors, pour tout $(r, \theta) \in U$,

$$(r^2u''(r) + ru'(r) - \lambda u(r))v(\theta) = 0$$

Puisque f n'est pas nulle, il existe θ_0 tel que $v(\theta_0) \neq 0$ et u est solution sur \mathbb{R}_+^* de

$$r^2 z''(r) + r z'(r) - \lambda z(r) = 0.$$

Ce n'est pas demandé, mais réciproquement, si u et v vérifient de telles équations (avec le même λ) alors $g(r,\theta) = u(r)v(\theta)$ est solution du problème.

II.C.1) cas $\lambda = 0$

Q 15. La fonction z est affine. Elle est périodique si et seulement si elle est constante.

Q 16. On se retrouve dans la question 11.

Q 17. Les solutions sont toutes les fonctions $g:(r,\theta)\mapsto A\ln r + B$ ou $f:(x,y)\mapsto A\ln(x^2+y^2) + B$ (le A dans f correspond à A/2 dans g).

II.C.2) cas $\lambda \neq 0$

Q 18.

2

- si $\lambda = -a^2 < 0$ (avec a > 0), alors les solutions sont $\theta \mapsto Ae^{a\theta} + Be^{-a\theta}$ qui ne sont pas périodiques (sauf si A = B = 0) : si $A \neq 0$ alors la limite en $+\infty$ et $\pm \infty$ ce qui contredit la périodicité (et que cela entraine que v est bornée). De même en $-\infty$ avec B.
- On étudie le cas $\lambda = \omega^2 > 0$. On a alors $v(\theta) = A\cos(\omega\theta) + B\sin(\omega\theta)$. Cette fonction est de période 2π si et seulement si $2\pi\omega$ est un multiple entier de 2π donc si ω est dans \mathbb{Z} . Une condition nécessaire et suffisante pour que (II.2) admette des solutions non nulles et de période 2π est que $\lambda = n^2$ avec $n \in \mathbb{Z}$ (en fait $n \in \mathbb{N}$ suffit puisque $\lambda = n^2$). Les solutions sont alors $v(\theta) = A\cos(n\theta) + B\sin(n\theta)$ avec A, B deux réels quelconques (non tous nuls si on veut $v \neq 0$.

Remarque : l'énoncé n'est pas très clair dans la suite... doit-on résoudre II.1 indépendamment du fait que λ doit s'écrire $\lambda = n^2$ ou bien doit-on prendre en compte cette condition nécessaire et suffisante pour l'équation?

Q 19. On s'intéresse à l'équation sur \mathbb{R}^*_{\perp} :

$$r^2 z''(r) + r z'(r) - \lambda z(r) = 0$$

 \mathscr{C}^2 sur \mathbb{R} . On a alors, pour tout r > 0, $z(r) = Z(\ln r)$. On dérive : $z'(r) = \frac{1}{r}Z'(\ln r)$ et $z''(r) = -\frac{1}{r^2}Z'(\ln r) + \frac{1}{r^2}Z''(\ln r)$. La fonction z est solution de II.1 sur \mathbb{R}_+^* si et seulement si

$$\forall r > 0, Z''(\ln r) - Z'(\ln r) + Z'(\ln r) - \lambda Z(\ln r) = 0,$$

ce qui donne,

$$\forall x \in \mathbb{R}, Z''(x) - \lambda Z(x) = 0.$$

— si $\lambda = \alpha^2 > 0$ (avec $\alpha > 0$): cela donne des fonctions sous la forme $Z(x) = Ce^{\alpha x} + Ce^{\alpha x}$ $De^{-\alpha x}$ où C et D sont des réels quelconques. La fonction z est solution sur \mathbb{R}_+^* si et seulement si il existe $C, D \in \mathbb{R}$ tels que, pour tout r > 0,

$$z(r) = C \exp(\alpha \ln r) + D \exp(-\alpha \ln r) = Cr^{\alpha} + Dr^{-\alpha}.$$

— si $\lambda = -\alpha^2 < 0$ (avec $\alpha > 0$): cela donne des fonctions sous la forme $Z(x) = C\cos(\alpha x) +$ $D\sin(\alpha x)$ où C et D sont des réels quelconques. La fonction z est solution sur \mathbb{R}_+^* si et seulement si il existe $C, D \in \mathbb{R}$ tels que, pour tout r > 0,

$$z(r) = C\cos(\alpha \ln r) + D\sin(\alpha \ln r).$$

Q 20. on envisage les deux situations (toujours avec $\alpha > 0$):

- si $\lambda = \alpha^2$, alors la limite de z en 0 est finie si et seulement si D = 0. Les solutions qui se prolongent par continuité en 0 sont les fonctions $x \mapsto Cx^{\alpha}$.
- si $\lambda = -\alpha^2$, il n'y a pas de limite finie en 0. C'est un peu plus embêtant à prouver. On choisit r tel que $\alpha \ln r = -2k\pi$ (avec $k \in \mathbb{N}$, soit $r_k = \exp(-2k\pi/\alpha)$ - ce terme tend vers 0 lorsque k tend vers $+\infty$ et $z(r_k) = A$ donc la limite devrait être A. Avec un terme $r_k = \exp((\pi - 2k\pi)/\alpha)$, on obtient une limite -A donc A = 0. De même avec $\alpha \ln r_k = \pm \frac{\pi}{2} - 2k\pi$, on obtient des limites B ou -B donc B = 0. Finalement A = B = 0.

Bilan: si on cherche à mettre tout cela ensemble - les fonctions g solutions qui admettent une limite finie lorsque *r* tend vers 0 sont les fonctions

$$g:(r,\theta)\mapsto r^n\left(A\cos(n\theta)+B\sin(n\theta)\right)$$

pour $n \in \mathbb{N}^*$ ainsi que les fonctions constantes (on a bien une limite nulle lorsque r tend vers 0 lorsque $n \in \mathbb{N}^*$ et ce, indépendamment de θ).

III Principe du maximum faible

III.A -

- On note, pour tout $x \in \mathbb{R}$, $Z(x) = z(\exp x)$. Par composition, la fonction Z est de classe Q 21. L'ensemble \overline{U} est borné. En effet, il existe R > 0 tel que $U \subset \overline{D}(0,R)$. Puisque le disque de droite est fermé, on a également $\overline{U} \subset \overline{D}(0,R)$. De plus \overline{U} est fermé donc finalement \overline{U} est compact (car fermé et borné dans un espace de dimension finie). La fonction f est continue sur ce compact donc f admet un maximum du \overline{U} .
 - **Q 22.** Supposons que $x_0 \in U$. Puisque *U* est ouvert, il existe r > 0 tel que $D(x_0, r) \subset U$. Ainsi si |t| < r, alors $x_0 + te_i \in U$. On peut alors s'intéresser à $\varphi : t \mapsto f(x_0 + te_i)$. Cette fonction admet un maximum en 0. On a $\varphi'(t) = \frac{\partial f}{\partial x_i}(x_0 + te_i)$ et $\varphi''(t) = \frac{\partial^2 f}{\partial x_i^2}(x_0 + te_i)$. Puisque φ est maximal en 0, sa dérivée en 0 est nulle et sa dérivée seconde négative ou nulle. Ainsi $\frac{\partial^2 f}{\partial x_i^2}(x_0) \le 0$ et cela pout tout $i \in [1; n]$. On en déduit que $\Delta f(x_0) \le 0$ et donc une contradiction (on peut aussi le faire par l'absurde comme dans l'énoncé et montrer que si pour un certain $i \in [1; n]$, $\frac{\partial^2 f}{\partial x^2}(x_0) > 0$ alors φ est localement convexe et n'a pas de maximum en x_0). La maximum M de f n'est donc pas atteint en un point de U - il est donc sur le bord de *U* et pour tout $x \in U$, f(x) < M avec $M = \sup f(y)$.

III.B -

3

- **Q 23.** On a $||x||^2 = x_1^2 + ... + x_n^2$. Ainsi $x \mapsto f(x) + \varepsilon ||x||^2$ est continue sur \overline{U} , de classe \mathscr{C}^2 sur U et $\Delta g_{\varepsilon}(x) = \Delta f(x) + 2n\varepsilon = 2n\varepsilon > 0.$
- **Q 24.** La fonction g_{ε} répond aux contraintes de la queston précédente. Ainsi, pour tout $x \in U$,

$$g_{\varepsilon}(x) < \sup_{y \in \partial U} g_{\varepsilon}(y),$$

c'est-à-dire

$$f(x) + \varepsilon \|x\|^2 < \sup_{y \in \partial U} g_{\varepsilon}(y)$$

Si on note $M = \sup f(y)$ (qui existe puisque f est bornée sur \overline{U} donc aussi sur ∂U) alors,

pour $y \in \partial U$, on a $g_{\varepsilon}(y) \le M + \varepsilon \|y\|^2$. Puisque \overline{U} est borné, il existe K > 0 tel que, pour tout $y \in \partial U$, $||y|| \le K$. On a alors, si $x \in U$,

$$f(x) + \varepsilon ||x||^2 \le M + \varepsilon K$$

année 2023/2024

et ceci est valable pour tout $\varepsilon > 0$ (K et M ne dépendent pas de ε). Lorsque ε tend vers 0, on obtient

$$f(x) \le M = \sup_{y \in \partial U} f(y)$$

Q 25. On considère $h = f_1 - f_2$. Cette fonction est harmonique sur U, continue sur \overline{U} , nulle sur ∂U donc pour tout $x \in U$, $h(x) \le 0$. De même avec $h = f_2 - f_1$. On en déduit que h est nulle et que $f_1 = f_2$.

IV Fonctions harmoniques et fonctions DSE

IV.A -

- **Q 26.** si on note z = x + iy, on sait que $\sum a_n z^n$ converge absolument si |z| < R et que la série de $|\mathbf{Q}|$ **28.** Puisque f est de classe \mathscr{C}^1 sur D(0,R) et ne s'annule pas, la fonction 1/f est également de fonctions associée converge normalement sur $\overline{D}(0, r)$ pour tout $r \in [0, R]$.
 - chaque function $u_n:(x,y)\mapsto a_n(x+iy)^n$ est continue sur \mathbb{R}^2 . Soit $r\in[0,R[$ et $\mathfrak{D} = \overline{D}(0,r)$. On a $||u_n||_{\infty,\mathfrak{D}} \leq |a_n r^n|$ donc $\sum u_n$ converge normalement sur \mathfrak{D} et la somme f est continue sur \mathcal{D} . Finalement f est continue sur D(0,R).
 - Pour la dérivation : on a un théorème de dérivation pour une variable. On va fixer $y = y_0$ et s'intéresser à la dérivabilité de $x \mapsto f(x, y_0)$. Cette fonction est définie sur $I=]-\tilde{R}, \tilde{R}[$ où $\tilde{R}=\sqrt{R^2-y_0^2}.$ On note également $v_n(x)=a_n(x+iy_0)^n.$ Pour tout $n\in\mathbb{N},$ v_n est de classe \mathscr{C}^1 sur \mathbb{R} , la série de fonctions $\sum v_n$ converge simplement sur I et, pour tout $x \in I$, $v'_n(x) = na_n(x+iy_0)n-1$. On fixe $r < \tilde{R}$ et J = [-r, r]. Si $|x| \le r$ alors $|x+iy_0| \le r' = \sqrt{r^2+y_0^2} < \sqrt{\tilde{R}^2+y_0^2} = R$. La série de fonctions $\sum na_nz^{n-1}$ converge normalement sur $\overline{D}(0,r')$ et pour tout $x \in J$, $|v'_n(x)| \le |na_n|(r')^{n-1}$. La série de fonctions $\sum v'_n$ converge normalement su J. On en déduit que $x \mapsto f(x, y_0)$ est de classe \mathscr{C}^1 sur tout $[-r',r] \subset I$ donc sur I, avec de plus,

$$\forall x \in]-R',R'[,\frac{\partial f}{\partial x}(x,y_0)=\sum_{n=1}^{+\infty}na_n(x+iy_0)^{n-1}.$$

Finalement pour tout $(x, y) \in D(0, R)$, on a $\frac{\partial f}{\partial x}(x, y) = \sum_{i=1}^{+\infty} n a_i (x + i y)^{n-1}$. Comme précédemment, cette fonction (de deux variables) est continue sur D(0,R) (propriété de convergences de $\sum na_nz^{n-1}$).

— On montre la même chose sur $\frac{\partial f}{\partial v}$ à la différence d'un facteur i dans la dérivée par rapport à γ .

- On peut appliquer le résultat à $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ et obtenir que f est de classe \mathscr{C}^2 sur D(0,R)... et ainsi de suite. On en déduit que f est de classe \mathscr{C}^{∞} sur D(0,R) (et qu'on peut dériver terme à terme).
- **Q 27.** On a $\Delta f = \Delta u + i \Delta v$. Si on montre que f est harmonique alors les parties réelle et imaginaire de Δf seront nulles donc u et v sont harmoniques sur D(0,R). On a montré que pour tout $(x, y) \in D(0, R)$,

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \sum_{n=2}^{+\infty} n(n-1)a_n(x+iy)^{n-2} \text{ et } \frac{\partial^2 f}{\partial y^2} = \sum_{n=2}^{+\infty} i^2 n(n-1)a_n(x+iy)^{n-2} = -\frac{\partial^2 f}{\partial x^2}(x,y).$$

On a bien $\Delta f(x, y) = 0$ pour tout $(x, y) \in D(0, R)$.

IV.B -

classe \mathscr{C}^1 sur D(0,R). On a alors

$$\forall (x,y) \in D(0,R), \frac{\partial \left(\frac{1}{f}\right)}{\partial y}(x,y) = -\frac{1}{f^2(x,y)} \frac{\partial f}{\partial y}(x,y) \text{ et} \frac{\partial \left(\frac{1}{f}\right)}{\partial x}(x,y) = -\frac{1}{f^2(x,y)} \frac{\partial f}{\partial x}(x,y)$$

Puisque $\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}$, on obtient la même propriété pour 1/f. La fonction 1/f est donc harmonique que D(0,R)

Q 29. On a f = u + iv, $\frac{\partial f}{\partial v} = \frac{\partial u}{\partial v} + i\frac{\partial v}{\partial v}$ et $\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$. La relation $\frac{\partial f}{\partial v} = i\frac{\partial f}{\partial x}$ donne $\frac{\partial u}{\partial v} = -\frac{\partial v}{\partial x}$ et $\frac{\partial v}{\partial v} = \frac{\partial u}{\partial x}$.

On a alors $\frac{\partial^2(uv)}{\partial x^2} = u \frac{\partial^2 v}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + v \frac{\partial^2 u}{\partial x^2}$ et un résultat similaire pour $\frac{\partial^2(uv)}{\partial y^2}$. On obtient

$$\Delta(uv) = u\Delta v + v\Delta u + 2\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right)$$

En utilisant les relations précédentes, on obtient $\frac{\partial u}{\partial v} \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}$ et ainsi $\Delta(uv) = 0$.

IV.C -

4

Q 30. La fonction h est de classe \mathscr{C}^1 sur D(0,R). On a, pour tout $(x,y) \in D(0,R)$,

$$\frac{\partial h}{\partial y}(x,y) = \frac{\partial^2 g}{\partial x \partial y}(x,y) - i\frac{\partial^2 g}{\partial y^2}(x,y) \quad \text{et} \quad \frac{\partial h}{\partial x}(x,y) = \frac{\partial^2 g}{\partial x^2}(x,y) - i\frac{\partial^2 g}{\partial x \partial y}(x,y),$$

ce qui donne

$$\frac{\partial h}{\partial y} - i \frac{\partial h}{\partial x} = \frac{\partial^2 g}{\partial x \partial y} - i \frac{\partial^2 g}{\partial y^2} - i \frac{\partial^2 g}{\partial x^2}(x, y) - \frac{\partial^2 g}{\partial x \partial y}(x, y) = -i \Delta g = 0$$

On en déduit que h se développe en série entière sur D(0,R).

Q 31. On procède comme indiqué. On vient de montrer que h est DSE sur D(0,R). On a donc l'existence d'une suite $(a_n)_{n\in\mathbb{N}}$ telle que

$$\forall (x, y) \in D(0, R), h(x, y) = \sum_{n=0}^{+\infty} a_n (x + iy)^n.$$

On note alors $H(x, y) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x+iy)^{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} (x+iy)^n$. On peut écrire H(x, y) = u(x, y) + iv(x, y). On a, d'après les résultats précédents,

$$\frac{\partial H}{\partial x}(x,y) = \sum_{n=1}^{+\infty} a_n (x+iy)^n = h(x,y) = \frac{\partial g}{\partial x}(x,y) - i \frac{\partial g}{\partial y}(x,y) = \frac{\partial u}{\partial x}(x,y) + i \frac{\partial v}{\partial x}(x,y),$$

ce qui donne $\frac{\partial u}{\partial x}(x,y) = \frac{\partial g}{\partial x}(x,y)$. On a également (puisque H est DSE - comme en Q29) $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$, ce qui donne $\frac{\partial u}{\partial y} = \frac{\partial g}{\partial y}$. On a ainsi

$$\frac{\partial(u-g)}{\partial x} = \frac{\partial(u-g)}{\partial y} = 0,$$

et puisque D(0,R) est un ouvert connexe par arcs, g-u est constante. On en déduit qu'il existe $C \in \mathbb{R}$ telle que $g=u+C=\mathrm{Re}(H)+C$.

IV.D -

Q 32. Puisque $0 \le r < R$, on a $f(r\cos t, r\sin t) = \sum_{n=0}^{+\infty} a_n r^n e^{int}$. On note $u_n(t) = a_n r^n e^{int}$. On a, pour tout $t \in [0,2\pi]$, $|u_n(t)| \le |a_n r^n|$ et $\sum a_n r^n$ converge absolument. La série de fonctions $\sum u_n$ converge normalement sur $[0,2\pi]$. Puisque chaque fonction u_n est continue sur $[0,2\pi]$, on peut permuter somme et intégrale et obtenir

$$\int_0^{2\pi} f(r\cos t, r\sin t) \, dt = \sum_{n=0}^{+\infty} a_n r^n \int_0^{2\pi} e^{int} \, dt.$$

Ces dernières intégrales sont nulles sauf pour n=0 avec une valeur 2π . Il reste uniquement $2\pi a_0 = 2\pi f(0,0)$ d'où le résultat.

Q 33. Si g est harmonique, alors il existe H DSE sur D(0,R) telle que g = Re(H). On peut écrire

$$H(0,0) = \frac{1}{2\pi} \int_0^{2\pi} H(r\cos t, r\sin t) \, dt$$

En prenant la partie réelle,

$$g(0,0) = \operatorname{Re}(H)(0,0) = \frac{1}{2\pi} \int_0^{2\pi} (\operatorname{Re}(H))(r\cos t, r\sin t) \, dt = \frac{1}{2\pi} \int_0^{2\pi} g(r\cos t, r\sin t) \, dt.$$

- **Q 34.** La fonction $t \mapsto f(r \cos t, r \sin t)$ est périodique et continue sur \mathbb{R} donc bornée. Par inégalité triangulaire, on obtient la majoration.
- Q 35. avec Q33
- **Q 36.** Si la maximum est nul, il n'y a rien à faire. Sinon (on s'inspire de la démonstration du cas d'égalité de l'inégalité triangulaire pour les intégrales de fonctions à valeurs complexes) :

$$|f(0,0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(r\cos t, r\sin t)| \, dt \le \frac{1}{2\pi} \int_0^{2\pi} |f(0,0)| \, dt = |f(0,0)|$$

d'où uniquement des égalités et $|f(0,0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(r\cos t, r\sin t)| dt$. Par différence, on a

$$0 = \frac{1}{2\pi} \int_0^{2\pi} |f(r\cos t, r\sin t)| \, dt - |f(0,0)| = \frac{1}{2\pi} \int_0^{2\pi} (|f(r\cos t, r\sin t)| - |f(0,0)|) \, dt = 0$$

Puisque $t\mapsto |f(r\cos t,r\sin t)|-|f(0,0)|$ est continue et négative sur $[0,2\pi]$, la fonction est identiquement nulle. Ainsi |f| est constamment égal à |f(0,0)|. On note $f(0,0)=ae^{i\theta}$ avec a=|f(0,0)| et on s'intéresse à la fonction \tilde{f} définie par $\tilde{f}(x,y)=f(x,y)e^{-i\theta_0}$ de sorte que $|\tilde{f}(0,0)|=a=\tilde{f}(0,0)$. La fonction est encore harmonique et vérifie donc, pour tout $r\in [0,R[$,

$$\tilde{f}(0,0) = a = \frac{1}{2\pi} \int_0^{2\pi} \tilde{f}(r\cos t, r\sin t) dt,$$

avec $|\tilde{f}| = a$. En prenant la partie réelle, on obtient

$$a = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}(\tilde{f})(r\cos t, r\sin t) dt,$$

avec $|\operatorname{Re}(\tilde{f})| \le |\tilde{f}| = a$. On déduit comme au dessus que $\operatorname{Re}(\tilde{f})$ est constante égale à a et que sa partie imaginaire est nulle. Ainsi \tilde{f} est constante et f également.

Q 37. on suppose que P n'a pas de racine complexe. On note $P = \sum_{k=0}^{n} a_k X^k$. Alors 1/P est défini sur \mathbb{C} .

— étape 1 : on prouve que |1/P| admet un maximum sur \mathbb{C} : on a, pour $z \in \mathbb{C}$,

$$|P(z)| = |z^n| \left| a_n + \frac{a_{n-1}}{z} + \ldots + \frac{a_0}{z^n} \right|,$$

et on a $\left|\frac{a_{n-1}}{Z} + \ldots + \frac{a_0}{z^n}\right| \le \frac{|a_{n-1}|}{|z|} + \ldots + \frac{|a_0|}{|z|^n}$. La limite est nulle lorsque |z| tend vers $+\infty$. Il existe M > 0 tel que, si $|z| \ge M$, alors $\left|\frac{a_{n-1}}{z} + \ldots + \frac{a_0}{z^n}\right| \le \frac{|a_n|}{2}$ et ainsi

$$|P(z)| \ge \frac{|a_n|}{2} |z|^n \text{ et } \frac{1}{|P(z)|} \le \frac{2}{|a_n||z|^n}.$$

Il existe alors R > M tel que, pour tout $z \in \mathbb{C}$ avec |z| > R, $\frac{1}{|P(z)|} \le \frac{1}{2|a_0|}$. Sur le compact $\overline{D}(0,R)$, la fonction continue $z \mapsto \frac{1}{|P(z)|}$ admet un maximum en un certain z_0 , supérieure à la valeur en z=0, soit $\frac{1}{|a_0|}$. On en déduit que 1/P est bornée sur \mathbb{C} et que le maximum de 1/|P| existe et est atteint en $z_0 \in \mathbb{C}$.

— On note $Q(X) = P(z_0 + X)$ de sorte que 1/|Q| est maximal en (0,0). Soit R > 0. Puisque $h: (x,y) \mapsto Q(x+iy)$ est DSE sur D(0,R) et ne s'annule pas, 1/h l'est aussi. De plus 1/h est maximale en (0,0) donc 1/h est constant sur D(0,R) de valeur 1/Q(0). On en déduit que Q est le polynôme constant et P également.

V Résolution du problème de Dirichlet dans le disque unité de \mathbb{R}^2

Q 38. On a

$$\frac{e^{it} + z}{e^{it} - z} = \frac{2e^{it} + z - e^{it}}{e^{it} - z} = -1 + 2\frac{2e^{it}}{e^{it} - z} = -1 + 2\frac{1}{1 - e^{-it}z}$$

et pour $|ze^{-it}| = |z| < 1$, on a

$$\frac{e^{it} + z}{e^{it} - z} = -1 + 2\sum_{n=0}^{+\infty} e^{-int} z^n = 1 + 2\sum_{n=1}^{+\infty} e^{-int} z^n$$

Pour démontrer que *g* est harmonique, on peut montrer que c'est la partie réelle d'une fonction DSE. On s'intéresse alors à

$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} h(t) \frac{e^{it} + z}{e^{it} - z} dt.$$

On a, puisque h est à valeurs réelles, g(z) = Re(F(z)). Il suffit donc de montrer que F est DSE sur D(0,R).

On a alors (avec z = x + i y)

$$F(x+iy) = \frac{1}{2\pi} \int_0^{2\pi} h(t) \frac{e^{it} + z}{e^{it} - z} dt = \frac{1}{2\pi} \int_0^{2\pi} \left(h(t) + 2 \sum_{n=1}^{+\infty} e^{-int} z^n h(t) \right) dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} h(t) dt + \frac{2}{2\pi} \int_0^{2\pi} \sum_{n=1}^{+\infty} e^{-int} z^n h(t) dt.$$

On essaie de permuter. On pose $u_n(t) = e^{-int}z^nh(t)$. Puisque h est continue sur $[0,2\pi]$, elle est bornée sur $[0,2\pi]$. Il existe M telle que $|h| \le M$. Alors, pour tout $t \in [0,2\pi]$, $|u_n(t)| \le M|z|^n$. Puisque |z| < 1, la série $\sum |z|^n$ converge, si bien que $\sum u_n$ converge normalement sur $[0,2\pi]$. Les fonctions u_n étant continues, on peut écrire

$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} h(t) dt + \sum_{n=1}^{+\infty} \left(\frac{2}{2\pi} \int_0^{2\pi} e^{-int} h(t) dt \right) z^n.$$

et ainsi F est DSE sur D(0,R). La fonction $(x,y) \mapsto g(x+iy) = \text{Re}(F(x+iy))$ est harmonique sur D(0,R).

Q 39. On a

$$\frac{e^{it} + z}{e^{it} - z} = 1 + 2\sum_{n=1}^{+\infty} e^{-int} z^n$$

On prouve comme dans la question précédente qu'on peut intégrer terme à terme, ce qui donne

$$\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} dt = 2\pi + 2 \sum_{n=1}^{+\infty} \left(\int_0^{2\pi} e^{-int} dt \right) z^n = 2\pi$$

car toutes les intégrales restantes sont nulles. On a donc

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} dt = 1$$

et en prenant la partie réelle, $\frac{1}{2\pi} \int_0^{2\pi} \mathcal{P}(t,z) dt = 1$.

- **Q 40.** la fonction intégrée est de période 2π donc l'intégrale sur une période ne dépend pas du point de départ.
- Q41. en multipliant par le conjugué

$$\frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}} = \frac{(e^{it} + re^{i\theta})(e^{-it} - re^{-i\theta})}{|e^{it} - re^{i\theta}|^2} = \frac{1 - r^2 + r(e^{i(\theta - t)} - e^{-i(\theta - t)})}{(\cos t - r\cos \theta)^2 + (\sin t + r\sin \theta^2)}$$
$$= \frac{1 - r^2 + 2ir\sin(\theta - t)}{1 + r^2 - 2r(\cos t\cos \theta - \sin t\sin \theta)}$$

7

ce qui donne en partie réelle,

$$\mathscr{P}(t, re^{i\theta}) = \frac{1 - r^2}{1 - 2r\cos(t - \theta) + r^2}$$

Q 42. on commence par effectuer le changement de variable « $u = t - \varphi$ ». On a

$$\int_{\varphi+\delta}^{\varphi+2\pi-\delta} \mathscr{P}(t,z) \, dt = \int_{\delta}^{2\pi-\delta} \mathscr{P}(u+\varphi,z) \, du.$$

Or

$$\mathscr{P}(u+\varphi,z) = \operatorname{Re}\left(\frac{e^{i(u+\varphi)}+z}{e^{i(u+\varphi)}-z}\right) = \operatorname{Re}\left(\frac{e^{iu}+ze^{-i\varphi}}{e^{iu}-ze^{-i\varphi}}\right) = \mathscr{P}(u,ze^{-i\varphi}).$$

On a donc

$$\int_{\omega+\delta}^{\omega+2\pi-\delta} \mathscr{P}(t,z) \, dt = \int_{\delta}^{2\pi-\delta} \mathscr{P}(u,z') \, du.$$

avec $z'=ze^{-i\varphi}$. Faire tendre z vers $e^{i\varphi}$ revient à faire tendre z' vers 1. On cherche par conséquent à montrer que

$$\lim_{z \to 1} \int_{\delta}^{2\pi - \delta} \mathscr{P}(t, z) \, du = 0$$

Avec $z = re^{i\theta}$, cela revient à faire tendre r vers 1 et θ vers 0. À t fixé dans $[\delta, 2\pi - \delta]$, on a $1 - 2r\cos(t - \theta) + r^2$ qui va tendre vers $2 - 2\cos(\theta) \neq 0$ et $1 - r^2$ vers 0. On essaie de permuter limite et intégrale : on note

$$w(r,\theta) = \int_{\delta}^{2\pi - \delta} \mathscr{P}(t, re^{i\theta}) du$$

et on s'intéresse à $\lim_{(r,\theta)\to(1,0)} w(r,\theta)$.

- on peut le faire par permutation limite et intégrale (à t fixé dans $[\delta, 2\pi \delta]$, on a $\lim_{(r,\theta)\to(1,0)} \mathscr{P}(t,re^{i\theta}) = 0 = \psi(t)$. La fonction ψ est continue sur $[\delta, 2\pi \delta]$. La phase sensible est la domination indépendante des paramètres l'idée est que θ se rapproche de 0 et que t est suffisamment loin de 0 et de 2π)...
- on peut essayer de majorer puisqu'on peut factoriser par $1-r^2$:

$$w(r,\theta) = (1 - r^2) \int_{\delta}^{2\pi - \delta} \frac{1}{1 - 2r\cos(t - \theta) + r^2} du$$

Le dénominateur ne s'annule que si $\cos(t-\theta)=1$ et r=1. Puisque $t-\theta$ est suffisamment loin d'un multiple entier de 2π . Cela n'arrivera pas. On peut choisir que $\theta \in [-\delta/2, \delta/2]$ ainsi $t-\theta \in [\delta/2, 2\pi-\delta/2]$ et $\cos(t-\theta) \le \cos(\delta/2)$. On a alors

$$1 + r^2 - 2r\cos(t - \theta) \ge 1 + r^2 - 2r\cos(\delta/2) > 0$$

et enfin pour $|\theta| < \delta/2$,

$$|w(r\theta)| \le \frac{1 - r^2}{1 - 2r\cos(\delta/2) + r^2} \int_{\delta}^{2\pi - \delta} dt \le 2\pi \frac{1 - r^2}{1 - 2r\cos(\delta/2) + r^2}$$

de limite nulle lorsque r tend vers 1 (et θ vers 0 en restant dans $[-\delta/2, \delta/2]$).

Q 43. Afin de relier g(z) et $h(\varphi)$, on écrit pour |z| < 1 (avec la question Q39),

$$h(\varphi) = \frac{1}{2\pi} \int_{\varphi}^{\varphi + 2\pi} h(\varphi) \mathscr{P}(t, z) dt$$

et ainsi

$$g(z) - h(\varphi) = \frac{1}{2\pi} \int_{\varphi}^{\varphi + 2\pi} \left(h(t) - h(\varphi) \right) \mathscr{P}(t, z) dt$$

Cette intégrale se découpe en deux : les valeurs de t pour lesquelles $t-\varphi$ est petit et le reste.

Soit $\varepsilon > 0$. Par continuité uniforme de h sur \mathbb{R} (puisque h est 2π périodique et continue sur \mathbb{R}), il existe $\delta > 0$ tel que, pour $|x-y| \le \delta$, on a $|h(x)-h(y)| < \varepsilon$. On fixe un tel δ avec de plus $\delta < \pi$ (on peut toujours baisser la valeur de δ). On a alors

$$\begin{split} g(z) - h(\varphi) &= \frac{1}{2\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \left(h(t) - h(\varphi)\right) \mathscr{P}(t,z) \, dt \\ &+ \frac{1}{2\pi} \int_{\varphi}^{\varphi+\delta} \left(h(t) - h(\varphi)\right) \mathscr{P}(t,z) \, dt \\ &+ \frac{1}{2\pi} \int_{\varphi+2\pi-\delta}^{\varphi+2\pi} \left(h(t) - h(\varphi)\right) \mathscr{P}(t,z) \, dt \\ &= \frac{1}{2\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \left(h(t) - h(\varphi)\right) \mathscr{P}(t,z) \, dt \\ &+ \frac{1}{2\pi} \int_{\varphi-\delta}^{\varphi+\delta} \left(h(t) - h(\varphi)\right) \mathscr{P}(t,z) \, dt \end{split}$$

par périodicité et en regroupant les deux dernières intégrales par relation de Chasles. On peut majorer séparément. On note M la borne supérieure de h sur \mathbb{R} :

$$\begin{split} \left| \frac{1}{2\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \left(h(t) - h(\varphi) \right) \mathcal{P}(t,z) \, dt \right| & \leq & \frac{2M}{2\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \left| \mathcal{P}(t,z) \right| dt \\ & = & \frac{M}{\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \mathcal{P}(t,z) \, dt \end{split}$$

et

$$\begin{split} \left| \frac{1}{2\pi} \int_{\varphi - \delta}^{\varphi + \delta} \left(h(t) - h(\varphi) \right) \mathcal{P}(t, z) \, dt \right| & \leq & \frac{1}{2\pi} \int_{\varphi - \delta}^{\varphi + \delta} \left| h(t) - h(\varphi) \right| \mathcal{P}(t, z) \, dt \\ & \leq & \frac{\varepsilon}{2\pi} \frac{1}{2\pi} \int_{\varphi - \delta}^{\varphi + \delta} \mathcal{P}(t, z) \, dt \\ & \leq & \varepsilon \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{P}(t, z) \, dt = \varepsilon, \end{split}$$

de nouveau en utilisant la périodicité et le caractère positif de \mathscr{P} (on intègre sur un intervalle $[\varphi - \delta, \varphi + \delta]$ de largeur 2δ inférieure à 2π).

Tout cela donne

$$|g(z) - h(\varphi)| \le \frac{M}{\pi} \int_{\varphi + \delta}^{\varphi + 2\pi - \delta} \mathscr{P}(t, z) dt + \varepsilon.$$

- **Q 44.** L'unicté a été faite en Q25. On vérifie que la fonction f où $f = g \operatorname{sur} D(0, 1)$ et $f(\cos t, \sin t) = h(t)$ est la solution du problème :
 - d'après Q38, g est harmonique sur D(0,1) donc f également,
 - par définition la condition au bord est vérifiée,
 - il reste à prouver que f est continue sur $\overline{D}(0,1)$ et pour cela que, pour tout $\varphi \in \mathbb{R}$, $\lim_{z \to e^{i\varphi}} f(z) = h(\varphi)$. On fixe $\varphi \in \mathbb{R}$ et $\delta > 0$ comme précédemment. C'est un peu plus délicat que simplement utiliser Q43 car on manipule f(z) avec $|z| \le 1$ cette fois. Il faut distinguer deux situations :
 - si |z| < 1, d'après la question Q42, $\lim_{z \to e^{i\varphi}} \int_{\varphi + \delta}^{\varphi + 2\pi \delta} \mathscr{P}(t, z) \, dt = 0$. Il existe donc $\alpha_1 > 0$ tel que si |z| < 1 et $|z e^{i\varphi}| < \alpha_1$ alors

$$\frac{M}{\pi} \int_{\varphi+\delta}^{\varphi+2\pi-\delta} \mathscr{P}(t,z) \, dt < \varepsilon \text{ et } |g(z)-h(\varphi)| < 2\varepsilon.$$

— si |z| = 1: par continuité de h en φ , il existe $\alpha_2 > 0$ tel que $|t - \varphi| < \alpha_2$ donne $|h(t) - h(\varphi)| = |f(e^{it}) - h(\varphi)| < \varepsilon$.

Si on prend z tel que $|z| \le 1$ et $|z - e^{i\varphi}| < \alpha = \min(\alpha_1, \alpha_2)$, alors $|f(z) - f(e^{i\varphi})| = |f(z) - h(\varphi)| < 2\varepsilon$. On a prouvé la continuité de f en tout point du cercle unité, ce qui était la dernière propriété manquante... on a donc prouvé que f est solution du problème de Dirichlet!!!